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Abstract—Bushfire is the primary destructive force that may
cause damage to a large region, a country, or even the Earth.
However, as bushfires spread too fast, they are often identified
when they cannot control and cause significant damage. The
reason is that existing works on remote sensing focus on low-
level information processing, and thus, face the challenge of
processing a massive amount of data in real-time. In this
work, we employ complex event processing (CEP) to extract
higher-level information to facilitate real-time bushfire detection.
In particular, we propose a ”spatial extension” to the ready-
powerful CEP techniques to enable bushfire monitoring from the
combinations of multiple spatial events. We further demonstrate
the proposed spatial-based CEP on a real-time bushfire detection
problem. Experimental results illustrate that our approach scales
well while achieving the competitive detection performance.

Index Terms—bushfire detection, complex event processing,
spatial query.

I. INTRODUCTION

Bushfires have been continuing to wreak havoc on people,
economies and nature [1], and they are getting more devastat-
ing due to the significantly changing of the global climate [2].
The cost of bushfires to the economy is billions of dollars per
year. Take Australia as an example, the damage cost of the
summer of 2020 only was estimated at $2 billion, and this cost
is still climbing [3]. Besides the immediate physical impacts,
bushfires also cause long-term consequences to biodiversity,
agriculture, and public health. Moreover, bushfires are the
primary factor that contributes to global warming and, in
the opposite direction, global warming makes the bushfires
more intensively. This reciprocal relationship is known as the
”climate feedback loops”. Therefore, the real-time mechanism
to actively monitor the bushfire would significantly reduce
unexpected damage to both long term and short term con-
sequences [4] and contribute to the stability of the global
environment.

With the emergence of new remote sensing technologies,
bushfire detection has been intensively studied using satellite

images which is available around-the-clock [5]. However, due
to the immense volume of sensing data, real-time detection for
a bushfire at a global scale is a notoriously hard task [6]. Many
thresh-hold based methods have been introduced to solve
the problem directly, such as FIMMA [5], GOES-AFP [7],
MODIS [6], and VIIRS-AFP [8]. Although these approaches
can deal with a rational low-latency and provide a (quasi) real-
time monitoring system, they yield less competitive perfor-
mance due to the simplicity of their approaches. Recently, deep
learning methods [9], [10] improve the accuracy significantly
by capturing information from multiple data sources. These
studies focus on raw data input (i.e. low-level information),
and thus, they encounter the difficulty of examining a massive
volume of sensed data in real-time

Complex Event Processing (CEP) technologies enable the
extraction of higher-level information from low-level and
high velocity data streams. These data come in the form of
temporal-events, and CEP correlates large amounts of such
events for detecting the situations of interest [11]. As some sit-
uations of interest are critical in many domains of application,
CEP technologies are widely applied in finance [12], supply
chain [13], smart grid [14], traffic management [15]. While
current CEP is ideal for monitoring such kind of temporal
events, CEP technologies do not support native operators
for spatial-events such as correlating the distance between
two partial points, estimating the intersection between the
boundary of two regions. These spatial events would facilitate
a wide range of spatial-based applications.

We argue that the support for spatial-events in CEP systems
is as equally crucial as temporal-events in different domains in
environmental management. We consider bushfire monitoring
in Fig.1 as a typical example. A system considers temperature
signal only to estimate a region as a potential fire could lead
to false-positive. However, the conclusion for a fire would be
more accurate on a sub-region which is the intersection of high
temperature and high CO2 (i.e., smoke) areas. In addition, we
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Fig. 1: Spatial events for bushfire detection.

are entirely confident to filter out a fire alert as the false alarm
if the combination of these signals arises in water surface
rather than a grassland or forest areas.

With these observations, in this work, we explore the fea-
sibility of extending spatial-events to the ready-powerful CEP
technologies to facilitate a real-time bushfire detection system.
To this end, we propose a spatial extension that can integrate
with existing CEPs to facilitate the monitoring environment
seamlessly. Following a discussion of related works (§II), the
contributions of this work are summarised as follows.

• Reminder on CEP background: §III provides a brief
background on CEP such as the event model, the query
language, the meta model, and the native operators.

• Spatial extension for CEP: §IV proposes the spatial
extension for CEP that supports for spatial and temporal
queries simultaneously.

• Real-time bushfire detection with spatial-based CEP: §V
further employs the proposed spatial-based CEP and
implements a prototype system for real-time bushfire
detection.

We evaluate our proposed spatial-based CEP with applica-
tions on the problem of real-time bushfire detection on four
real-world datasets (§VI). The results show that our approach
outperforms other baselines both in term of accuracy and
timeliness of detection. In addition, we achieve competitive
results on other fine-grained metrics. We conclude our paper
in §VII.

II. RELATED WORKS

In this section, we present background information on the
two main topics of this work: bushfire detection and complex
event processing.

A. Bushfire detection

Current works on bushfire detection use raw satellite im-
ages, and then estimate the background temperature, and
eventually employ some hotspot algorithms [16] to perform
the fire detection. For instance, MODIS [6], a threshold
algorithm of Moderate Resolution Imaging Spectroradiome-
ter, conducts a variety of processing steps such as cloud

masking, land masking, background characterisation before
discovering a fire signal using the threshold tests. FIMMA
(Fire Identification, Mapping and Monitoring) [5] is another
threshold technique from the Advanced Very-High-Resolution
Radiometer (AVHRR) system [17] which supports wildfire
detecting at night. However, the algorithm performs well in
the forest regions only. The VIIRS (Visible Infrared Imaging
Radiometer Suite) also propose a technique that is able to work
with the MODIS Fire and Thermal Anomalies product [8].
Recent approaches extract the temporal cycle of a day to
identify the fire signal using the AHI (Advanced Himawari
Imager) system [16]. However, they either yield low accuracy
or only can detect when the fires had spread over a large
area [16].

Recently, deep learning methods [9], [10] improve the
accuracy significantly by capturing information from multiple
and heterogeneous data sources. However, these studies focus
on raw data input (i.e., low-level information), and thus,
they confront the difficulty of investigating a massive amount
of data in real-time. Therefore, unlike existing methods, we
employed Complex Event Processing (CEP) to extract high-
level information from low-level streaming of data input to
facilitate the bushfire detection in a real-time manner.

B. Complex Event Processing

Complex Event Processing (CEP) technologies allow pro-
cessing, analysing and correlating large amounts of temporal
events from multiple data sources. CEP techniques could be
classified into three main categories [18]: (1) Logic-based
approaches [19]–[21] reply on logic inference mechanisms to
derive the situation of interest from a stream of events that are
defined by a formal and declarative language. (2) Tree-based
approaches [22], [23] employ a non-declarative language to
define the event, and the implementation is based on a cost
model which is similar to the traditional relational database.
(3) Automata-based approaches [11], [24], [25] derive the
output by iterating through intermediate states of an automata
model.

Although existing CEP techniques differ from each other
in their implementation models and query language schema,
they share a common trait. The common trait is that they
do not support spatial operators that can correlate spatial
events, e.g. events associated with spatial information. In this
work, we go beyond the state-of-the-art CEP techniques and
propose a spatial extension for CEP to facilitate environmental
monitoring. Particularly in this work, we apply for bushfire
detection.

III. BACKGROUND ON COMPLEX EVENT PROCESSING

Complex event processing (CEP) is a set of methods that
support obtaining and monitoring a stream of data to discover
the situation of interest in real-time. The situation of interest
is user-defined via the form of rules or patterns. In this
work, these rules are constructed using the SASE query
language [26], but this is not a restriction, and our framework
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can be applied to any other CEP query languages. Below, we
present some definitions which are used in our paper.

A. Preliminaries

Event. We define an event as an activity of interest that
happens or contemplates as occurring in a system. Examples
of events could be a failure of the IT network, an opening of
the door, or an increase of temperature in a particular spatial
location.
Event attribute. An event attribute is an element in the event
that represents the property or characteristic of an event. Each
attribute includes a name and a specific type (Integer, Float,
Boolean, or String).
Event type. An event type is a collection of event objects
that belong to the same class. Each event type is defined as
a structure that comprises a set of attributes, and all event
types contain a common timestamp. An example schema for
door opening can be described as (eventId, timestamp, doorId,
value).
Primitive event. A primitive event is an event that cannot be
decomposed to other events. A primitive event can also be
referred to as an atomic event.
Complex Event. A complex event is a combination of prim-
itive events that describe the situation of interest. A complex
event is also called a pattern, and the system will actively
report whenever the pattern is detected.

B. Event Model

In this model, an infinite sequence of events or an event
stream is fed as the input of the event processing system.
Each event is formulated as a time annotation and a payload.
The former indicates the chronological order between events,
while the latter reveals additional information about the timing
of their appearance. Similar to the concept of type and
instance in a programming language, the event model includes
the event types representing different classes of events. The
complex event processing requires processing events stream
from multiple types, which is referred to as heterogeneous
sources.

C. CEP Query language

The SASE language is a SQL-like structure that supports
correlation, filtering, and transformation of events. We use
SASE language [26] to define how to filter specific events, how
to correlate multiple events via value and time constraints, and
how to construct the answer via correlated events. The overall
formation of the language is defined as follows:

[FROM <streaming events>]
SEQ <pattern>

[WHERE <conditions>]
[WITHIN <window>]
[RETURN <pattern>]

The SASE language is a declarative language with seman-
tics associated with each clause. The FROM clause specifies
the input stream name. It can be omitted, and the system

shall select the default input stream. The SEQ, WHERE, and
WITHIN clauses are the main block of the query. The situation
of interest is defined under the SEQ clause. The WHERE clause,
if it exists, gives value constraints over the input events to
satisfy the pattern. A sliding window for time constraint over
the event pattern is further specified in the WITHIN clause.
Finally, the RETURN clause yields a complex event for the
final result of the query.

D. CEP Meta Model

Given the complex event language, we present the process-
ing model for the language in this section. The query plan
for this language comprises of the basic operators including:
sequence scan and construction, selection, negation, window,
and transformation.

• Sequence scan and construction. Sequence scan and se-
quence construction handle the predicates specified under
SEQ clause. This operator aims to convert a stream of
events into a stream of sequence, in which each sequence
is a unique matching for the pattern of interest.

• Selection. Similar to relational database querying, the se-
lection operator filters each sequence by assessing all the
predicates specified by WHERE clause. If all evaluations
are a success, the sequence is transferred to the output.

• Window. The window operator examines all conditions
under the WITHIN clause. It considers each sequence
and evaluates whether the temporal correlation between
the relevant events is equal or lower than a certain time
window specified in advance.

• Negation. The negation operator is expressed by ’!’ and
defines in the SEQ clause. This operator is beneficial
when the non-occurrence of a specific event plays a
crucial role in the situation of interest.

• Transformation. Finally, the transformation operator
transforms the resulting sequence back to a complex event
by incorporating all the events in this sequence.

Due to brevity, we omit the detailed implementation of each
operator. However, exciting readers may refer to that detailed
implementation in the tutorial reported in [27].

IV. SPATIAL EXTENSION FOR CEP

Complex Event Processing technologies prove their effi-
ciency in rules monitoring over data stream [28]. However,
they lack the native support for spatial information of the
events, which is vital for the environment and disaster moni-
toring. To resolve this shortcoming, we propose an extension
that takes the standard meta model of CEP as a reference and
endows it with the spatial extension. The proposed component
enables extended operators that support spatial operations such
as: Union, Intersection, Distance, among others.

A. Extended Events and Operators

Besides the standard events (in §III-A) for a CEP system,
the extension required for defining additional events as fol-
lows.
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Spatial Event. We define a spatial event as a primitive event
associated with spatial information where the event is reported
to occur. The spatial information can be a location (lat,long)
or a boundary area.
Spatial Complex Event. A complex event is a combination of
spatial events that describe the situation of interest. A complex
event is also called a pattern, and the system will actively
report whenever the pattern is detected.

B. Prototype applications

The extended spatial operators (see Figure 2) for the spatial
query can be categorised into two main groups as follows:

Fig. 2: Extended operators for spatial-based CEP.

• spatialArithmetic: They are those that receive n-operands
of the geometry type and return another geometry. These
are for example: Union, Intersect.

• spatialBoolean: They are those operators which receive n-
operands and return a true or false value. These are
the classic operators: Equals, Distance, Contains.

The former group of operators aims to return the boundary
or area where the pattern occurs. The latter group, in particular,
allows indicating whether an event occurs at a given location
or area (or not). The proposed model makes it possible to
represent spatial events and spatial operators of any type which
is independent to any specific CEP platform.

C. Implementation Prototype for Spatial-based CEP

The implementation prototype is extended from the
work [29], in which the standard operations for CEP are
ready to use. In this section, we present an implementation
for the spatial extension. The extensions consist of two main
components: the Query Analyser and the Pattern Matcher.
Query Analyser. CEP system filters the situation of interest
defined by the end-user from a continuous stream of events.
The SASE language helps to define the situation of interest.

We use Flex [30] to implement the query analyser for
the SASE language. Flex performs the query analysing via
a deterministic finite automaton (DFA), a well-known the-
ory in computer science that accepts regular languages. In
particular, the two components are implemented: the lexical
analysis, and the syntax analysis. The former component
parses the query input into the meaningful tokens, and the
latter component correlates these tokens to find the relation-
ships between them. Besides, the standard tokens for stan-
dard SASE language such as Pattern, SEQ, Where,
Within, Return, we reserve the additional tokens for
our proposed operations such as Union, Intersect,
Equals, Distance, Contains.

Pattern Matcher. Pattern Matcher is the core processing
unit in a CEP system. Pattern Matcher uses the Query
Analyser to analyse the pre-defined situation of interest
and transform that situation into an automata model. To
enable spatial data handling, we also extend the Pattern
Matcher to support spatial operations. Below, we demonstrate
a sample implementation for the extended data structure of
Polygon object and Union operator. The detailed imple-
mentation of other objects (i.e., Polyline, and Point) and
other operators (i.e.,Intersect, Equals, Distance,
Contains) are omitted due to space limitation. However,
the interesting reader could easily re-implement them using
the following code snippet.
namespace bg = boost::geometry;
typedef bg::model::polygon<bg::model::
d2::point_xy<double>> poly_t;
struct attr_e {

enum {
INT64_T,
DOUBLE,
POLYGON

} tag;
union {

int64_t i;
double d;

}
poly_t poly;

}
Next section, we present a detailed application on real-time

bushfire detection. We demonstrate the working mechanism
and the automata model behind the spatial-based CEP in a case
study of bushfire detection. Although the bushfire detection is
selected for demonstration in this work, our proposed spatial-
based CEP could be applied to a wide range of environmental
change monitoring.

V. REALTIME BUSHFIRE DETECTION WITH
SPATIAL-BASED CEP

A. Problem Statement

Given a data stream S, and it generates events belong to
n types, E = {E1, E2, ..., En}. A CEP-based monitoring
system then captures events of these types continuously. Each
event type is defined as a structure that comprises a set of
attributes, and all event types contain a common timestamp.
The timestamp collects the time when the event happens.
In the following section, we present the event types taken
into account in this study; however, our approach is easily
adapted to a wide range of other event types for environmental
monitoring.

B. Event Type of Interest

Aerosol event. The amount of aerosol is used to precisely
correct the atmospheric of remote sensing image, and measure
the available solar resource. The aerosol source is constructed
by solid convective cells, which are generated after a fire event
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occurs. This convection might be sufficiently strong to enter
the tropopause and cause the injection of aerosol mass from
the fire into the lower stratosphere. In addition, absorbing
aerosol in the lower stratosphere and the upper troposphere
can be uplifted to more significant altitudes from localized
heating [31]. While many bushfires have occurred in the past,
the effect of the stratospheric aerosol has just been observed
in recent decades.

In general, the aerosol event (smoke) can be formulated as:
Aerosolsmoke = c07.high AND (c07− c14).high

Hotspot. The ABI fire algorithm [32] is a thresholding and
multi-spectral algorithm that mainly uses the channel 7 and 14
of satellite data to determine hotspot and retrieve their features.

Typically, there are brightness temperature differences be-
tween short-wave and long-wave infrared window observations
of the clear sky. The reasons for that might be the water
vapor attenuation, the reflected solar radiation, and surface
emissivity differences. The differences would be more con-
siderable when a portion of pixels (p) is significantly warmer
than the remaining pixels (1-p). The hotter portion (p) shall
contribute more radiance in the short-wave than the long-wave
observations. Figure 3 presents a scan line that extends from
a more extraordinary rain forest to a transition zone. When
observing the brightness along the scan line, we see a general
increase in both channels on different locations with possible
fires.

Fig. 3: Hot spot anomaly via water vapor [32].

As these peaks might be associated with a possible fire
activity, we formulate the event for hotspot events as follows:
hotspot = c07.high OR (c07− c14).high

CO2. Fires from biomass burning cause large quantities of
CO2 emitted into the atmosphere. More precisely, it has
been suggested that the amount of CO2 caused by biomass
burning accounts for as much as 15–30% of global CO2
emissions [33]. The emission of CO2 during the active years
of wildfire in the western U.S. accounts for up to 20% of
annual emission [34]. Channel 16 in the satellite data is able
to absorb CO2, and it has a particular wavelength of 13.3µM .
As it is closely associated with the amount of carbon dioxide
emitted in the atmosphere, it is also called as CO2 channel,
and the event for CO2 is defined as:
CO2 = c16.high

Fuel. The fuel loadings can cause more intense fire behavior.
Therefore, integrating spatial information of fuel loadings is
critical to improving the performance and trustworthiness of
the fire detection system [35], [36]. For example, a fire alarm
signal should be discarded to avoid a false alarm if it occurs
in the water or wildland surface. This study will focus on
categorization, which has high chances for bushfires, such as
forests and grassland. All other types of land use will be
ignored. Follow a proven idea in the work [37]; we classify
the data from Landsat 8 using the SVM classifier, and each
class represents a spatial event for fuel type.

C. Modeling Bushfire Patterns with Complex Spatial Events

We inherited domain knowledge from multiple disciplines
to define the patterns of interest for bushfire [32]. As we have
already had the spatial events of interest, the definition of
a pattern of interest is straightforward. According to current
results [9], because the fire patterns differentiate between day-
time hay night-time, we define the pattern for day and night
separately as follow.

Pattern for day:

Pattern for night:

A logical prototype of our proposed spatial-based CEP
system is presented in Figure 4. The system processes the
incoming events in real-time and actively detect the patterns
of interest according to the bushfire-day and bushfire-night
patterns.

Fig. 4: A sketch solution of realtime bushfire detection.

From the defined pattern, the implemented Pattern Matcher
analyse and transform the pattern into an automata execution
schema for real-time filtering and matching. An example
automata execution schema for the bushfire-day pattern is
presented in Figure 5. The schema for bushfire-night exposed
the same trend; therefore, discard it due to space limitation.
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Fig. 5: Automata execution schema (bushfire-day).

The detected patterns are further cross-checked with the fuel
type events to filter out all of the false-positives before alerting
the final alarm.

VI. EXPERIMENTS

In this section, we present the comprehensive evaluations
of our proposed framework. We first demonstrate the experi-
mental setting (§VI-A), and then evaluate various aspects of
the approach as follows:

• The effect of real-time bushfire detection (§VI-B).
• The end-to-end performance of the framework (§VI-C).
• The real-time detection at pixel-wised level (§VI-D).
• The correctness of fire localisation (§VI-E).

A. Experimental setting

Dataset. We assess the proposed framework on different real-
world benchmark datasets as follows.

• County Fire: The County Fire started on the Eastern
side of the Berryessa Lake in Napa County and Yolo
County in 2018. The total damage caused by this fire
was approximately 365km2 of burned area [38].

• Camp Fire: The Camp Fire occurred in California in
2018. This fire was one of the most destructive fires in
the state’s history that covered an area of 620 km2 [39].

• Woolsey Fire: The Woolsey Fire happened in Ventura
Counties of California and Los Angeles in 2018. It was
a significantly destructive wildfire that burned about 392
km2 [40].

• Kincade Fire: The Kincade Fire started in Sonoma
County, California in 2019. The fire covered above 314
km2 [41] of the destroyed area.

The key characteristics of these datasets are summarised in
(Table I).

TABLE I: Characteristics of the datasets

Dataset Time Size Ratio 1

County 14:12 30.06.2018 265 × 266 3,381,234 : 2,286
Woolsey 14:22 08.11.2018 110 × 145 761,854 : 2,018
Camp 06:33 08.11.2018 290 × 300 6,252,876 : 11,124
Kincade 21:24 23.10.2019 265 × 266 3,381,728 : 1,792

1 The ratio between non-fire over fire pixels.

Baselines. We test our proposed framework against several
competing baselines as follows:

• GOES-AFP: is the state-of-the-art technique [7] that uses
the GOES system.

• Threshold-based: An ensemble of threshold-based meth-
ods [6], [8].

• CNN-based: is the deep learning technique for bushfire
detection [9].

Metrics. We employ Weighted F1-score as the main metric,
and we employed the class ratio as the weight factor [42]. Dif-
ferent from the Accuracy metric, Weighted F1-score captures
the imbalanced class distribution of the employed datasets. We
further evaluate our framework with more fine-grained metrics
as follows.

• Lag time: the delay between the time of detection and
the time when bushfire actually happens.

• Distance-based: To investigate the ability of fire local-
isation of detecting technique, we consider the distance
between the predicted result in comparison with the real
fire. Here, the image Euclidean distance metric [43],
[44] is employed as it is proven to be efficient to small
variants, and robust to assess the correctness of fire
localisation of our method.

B. Real-time Bushfire Detection

To evaluate our model’s effectiveness in the real-time de-
tection of bushfire, we experiment on the streaming of events
and the output is captured every minute. The results are shown
in Figure 7.

Fig. 7: Camp Fire prediction by our model.

We see that the model can localise the fire and raise the
alarm with a short interval (i.e., several minutes). An interest-
ing finding is that the model can successfully detect multiple
fires, although these fires happened quickly. For example, the
fire at 10h32 and the fire at 11h00 arose within a time frame
of fewer than 30 minutes. However, the model successfully
identified them as separate fires in different regions, thanks
to the support for the spatial query of the spatial-based CEP
model. The detection of multiple fires is crucial as it increases
the reliability of the system.

C. End-to-end Comparison

To investigate the efficiency of our framework, we assess
the performance of all competing methods in an end-to-end
manner against two different metrics: (i) (i) Weighted F1 and
(ii) the Lag time (h). Table II depicts the detailed comparison.

In general, our framework consistently outperforms other
baselines over all considered metrics. GOES-AFP performs
the worst as it adopts a greedy strategy in attracting all
possible wildfire signals, which might raise false alarms [7].
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Fig. 6: Pixel-wise detection

TABLE II: Region-level alarm.

Weighted F1 Lag time (h)

GOES-AFP 85.5% 4 - 8
Threshold 91.7% 3 - 14
CNN-based 93.89% 2.6
Ours 94.39% 0 - 0.24

Although threshold and CNN-based methods yield a moderate
performance and could be competitive with our performance,
they suffer the high latency (i.e., the high lag time).

D. Real-time pixel-wise monitoring

Because a bushfire is a spatial event that spreads over
time, looking at the pixel level of the bushfire would help us
understand how it develops and increase the chance to mitigate
it in the future. To achieve this goal, we conduct a set of pixel-
wise predictions during the lifetime of a bushfire.

Figure 6 reveals the result. The difference between the
starting time and current time of a bushfire is shown in the
X-axis, and predicted results in terms of Precision, Recall,
and Weighted-F1 is presented in the Y-axis. In general, the
performance significantly fluctuates at starting and begins to
be stable from the center of the lifetime of the fire. Such
phenomenon can be explainable because when a fire grows
into intensive, the spatial dependency between neighboring
pixels is more visible and enables more precise predictions.

E. Fire localisation

In spatial analysis application, the prediction could be differ-
ent from the actual ground-truth by a reasonable margin. The
lower of the offset, the better of the performance. Therefore,
in this experiment, we measure how difference between the
actual locations of the fires compared to the detected pixels
by our framework.

Figure 8 depicts the result, in which Y-axis is the Euclidean
distance and the X-axis is the timeline of the bushfires. At the
starting point, the offset is high as some necessary events are
insufficient. The distance gap then reduces and matures at a
stable level. However, it cannot reaches zero. This behavior
could be interpreted by the integration errors and the resolution
of the satellite data stream.

VII. CONCLUSION

In this paper, we proposed a spatial extension to existing
Complex Event Processing (CEP) techniques in order to

Fig. 8: Difference between actual pixels and detected pixels.

monitor the situations of interest related to the environment.
The extension allows to define spatial events and correlate the
events based on their spatial information. We demonstrate the
effectiveness of the spatial-based CEP on real-time bushfire
detection problem. The empirical results show that our de-
tection approach outperforms other baselines on a variety of
metrics. In future, we intend to develop a generic framework
that supports environmental monitoring in different aspects
such as water pollution, water surface and land-use change
over time [45]–[53].
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[35] E. Chuvieco, I. González, F. Verdú, I. Aguado, and M. Yebra, “Prediction
of fire occurrence from live fuel moisture content measurements in a
mediterranean ecosystem,” IJWF, vol. 18, no. 4, pp. 430–441, 2009.

[36] R. D. Ottmar and E. Alvarado, “Linking vegetation patterns to potential
smoke production and fire hazard,” in SNSS., vol. 193, pp. 93–96, 2004.

[37] K. Jia, X. Wei, X. Gu, Y. Yao, X. Xie, and B. Li, “Land cover
classification using landsat 8 operational land imager data in beijing,
china,” Geocarto International, vol. 29, no. 8, pp. 941–951, 2014.

[38] Wikipedia, “County fire.” https://en.wikipedia.org/wiki/County Fire,
2018.

[39] C. Gov, “Camp fire.” https://www.fire.ca.gov/incidents/2018/11/8/
camp-fire/, 2019.

[40] Wikipedia, “Woolsey fire.” https://en.wikipedia.org/wiki/Woolsey Fire,
2018.

[41] Wikipedia, “Kincade fire.” https://en.wikipedia.org/wiki/Kincade Fire,
2019.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, pp. 1097–1105,
2012.

[43] L. Wang, Y. Zhang, and J. Feng, “On the euclidean distance of images,”
TPAMI, vol. 27, no. 8, pp. 1334–1339, 2005.

[44] J. Gou, H. Ma, W. Ou, S. Zeng, Y. Rao, and H. Yang, “A generalized
mean distance-based k-nearest neighbor classifier,” ESWA, vol. 115,
pp. 356–372, 2019.

[45] T. T. Nguyen, M. T. Pham, T. T. Nguyen, T. T. Huynh, Q. V. H.
Nguyen, T. T. Quan, et al., “Structural representation learning for
network alignment with self-supervised anchor links,” ESWA, vol. 165,
p. 113857, 2021.

[46] T. T. Nguyen, M. Weidlich, H. Yin, B. Zheng, Q. H. Nguyen, and
Q. V. H. Nguyen, “Factcatch: Incremental pay-as-you-go fact checking
with minimal user effort,” in SIGIR, pp. 2165–2168, 2020.

[47] T. T. Nguyen, T. T. Nguyen, T. T. Nguyen, B. Vo, J. Jo, and Q. V. H.
Nguyen, “Judo: Just-in-time rumour detection in streaming social plat-
forms,” Information Sciences, vol. 570, pp. 70–93, 2021.

[48] B. Zhao, H. van der Aa, T. T. Nguyen, Q. V. H. Nguyen, and
M. Weidlich, “Eires: Efficient integration of remote data in event stream
processing,” in SIGMOD, pp. 2128–2141, 2021.

[49] N. T. Tam, H. T. Dat, P. M. Tam, V. T. Trinh, N. T. Hung, Q.-T. Huynh,
and J. Jo, “Monitoring agriculture areas with satellite images and deep
learning,” Applied Soft Computing, p. 106565, 2020.

[50] C. T. Duong, T. T. Nguyen, H. Yin, M. Weidlich, S. Mai, K. Aberer, and
Q. V. H. Nguyen, “Efficient and effective multi-modal queries through
heterogeneous network embedding,” TKDE, 2021.

[51] N. T. Tam, H. T. Trung, H. Yin, T. Van Vinh, D. Sakong, B. Zheng, and
N. Q. V. Hung, “Entity alignment for knowledge graphs with multi-order
convolutional networks,” in ICDE, pp. 2323–2324, 2021.

[52] N. T. Tam, M. Weidlich, B. Zheng, H. Yin, N. Q. V. Hung, and
B. Stantic, “From anomaly detection to rumour detection using data
streams of social platforms,” PVLDB, vol. 12, no. 9, pp. 1016–1029,
2019.

[53] T. T. Nguyen, M. Weidlich, H. Yin, B. Zheng, Q. V. H. Nguyen, and
B. Stantic, “User guidance for efficient fact checking,” PVLDB, vol. 12,
no. 8, p. 850–863, 2019.

8

Authorized licensed use limited to: National University of Singapore. Downloaded on September 08,2025 at 03:11:21 UTC from IEEE Xplore.  Restrictions apply. 


