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Abstract. Covid-19 is a global disaster that needs computing power to analyze,
predict and interpret. So far, there have been several models doing the job. With a
huge amount of daily data, deep learning models can be trained to achieve highly
accurate forecasts but their mechanism lacks explainability. Epidemiological mod-
els, e.g. SIR, on the other hand, can provide insightful analyses, but they require
appropriate parameter values, which might be complicated in certain locations.
The fourth wave of the pandemic in Ho Chi Minh City (HCMC), Vietnam in
2021, brought valuable lessons along with accurate and specific data. Hence, we
introduce an explainable Al model, known as BeCaked™, to predict and analyze the
pandemic situation efficiently from the collected data. BeCakedt combined deep
learning and epidemiological models enhanced by specific parameters related to
the policies endorsed by the government. Such a combination makes BeCaked*t
so accurate and a tool that provides information for policymakers to respond
appropriately. One take a try BeCaked™ at http://www.cse.hcmut.edu.vn/BeCaked.
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1 Introduction

SARS-Cov-2 has spread rapidly through most the countries in the world and has caused
an infamous global pandemic (Covid-19 pandemic). In Vietnam, the spread of the Delta
since the fourth Covid-19 wave in May 2021 has caused significant damages and losses,
especially in Ho Chi Minh City (HCMC). Though the government has made every
effort, such as quarantine (like previous waves) and vaccination, the city still experienced
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significant deceased cases. Currently, as the situation in HCMC has been under control,
a model needs to be developed to forecast and interpret data from the past to prevent
similar sufferings in the future.

Typically, there are two major approaches for pandemic forecasting including com-
partmental and time forecasting models. While the latter enjoys good accuracy, the
former has the advantage of explainability. Hence, in 2020 we introduced a predic-
tion model, which combined the Susceptible-Infectious-Recovered-Deceased (SIRD)
[1] and deep learning, known as BeCaked [2]. BeCaked includes two sub-models, a
compartmental model in epidemiology, and a deep learning system. When a new out-
break occurred in HCMC in May 2021, we upgraded BeCaked with a new version named
BeCaked*, which offers the following contributions: (1) we propose a new model com-
bining compartmental and learning techniques for Covid-19 forecast interpretation; (2)
we introduce a set of specific parameters to address the situation in HCMC during the
fourth wave; and (3) we implement the model as a Web application where everyone can
visit daily at http://www.cse.hcmut.edu.vn/BeCaked.

2 Background Compartmental Models in Epidemiology

SIR model [3] is a classical model in epidemiology. It assumes that the fixed population
N is divided into three compartments that can vary over time as below:

— S (susceptible): individuals who have not been infected with the disease,

— I (infectious): individuals who are currently infected,

— R (recovered): individuals who have recovered from the disease and have immunity
to it.

Initially, most people are susceptible (S), and the others are in the [ state. Each
person in § interacts with the infectious population and becomes contagious with the
effective contact rate of the disease (8). Each infectious individual has the rate of u
of being recovered. These interactions are expressed in Fig. 1(a), assuming that the
recovered people cannot be reinfected with the disease (i.e. not get reinfected and not
infect others)
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In addition, SIRD is an extension of SIR. Compared to SIR model, SIRD has four
states, namely S (susceptible), I (infectious), R (recovered) and D (deceased). The mean-
ings of S, I, and R are the same as those in the SIR model while the D state represents
deaths due to the disease. At any given time, ¢, S(¢), I(¢), R(¢), D(t) denote the number of
the individuals in each corresponding compartment, and they satisfy S(¢) + 1(¢) + R(?)
+ D(t) = N. SIRD model is described by the system of equations (1b). Similar to the
SIR model, there are relations in this model, which are depicted in Fig. 1(b).
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3 Related Works

Pure Time Series Forecasting. In 2020, Hernandez et al. proposed a method [4] that
estimated the parameters of Autoregressive Integrated Moving Average (ARIMA) [5] to
predict the number of infected cases for many countries. Another work by A. Ghany et al.
proposed a simple Multi-layer Perceptron (MLP) network [6] to forecast the time series
data of the epidemic. This method tries to fit the data to the regression models directly
without the basis of epidemiological theory. The model returns a beautiful curve fitting
with the actual data, but the process is unexplainable. Thus, this direction is a black box,
which results in a lack of reliability.

Compartmental Model. Chatterjee et al. [7] improved the SIRD model by reducing
the infection rate 8 over time to reflect the effect of lockdown policies, then they tuned
parameters to simulate and analyze the actual situation. Berger et al. [8] proposed a more
complex model based on Susceptible-Exposed-Infectious-Recovered (SEIR) by consid-
ering symptomatic, testing, and vaccination factors. Using models in epidemiology is
more explainable since they are built based on epidemiological theory, but the accuracy
of this direction does not reach the deep learning models’ accuracy as it is less adaptable
to new data.

The BeCaked Model. As mentioned in Sect. 1, this work is an improvement of
BeCaked that was proposed in 2020. The BeCaked is a model based on Encoder-Decoder
architecture. The Encoder is an LSTM network to extract features of epidemic time-series
data (i.e number of susceptible cases, infected cases, recovered cases, deceased cases)
and return a set of parameters for the SIRD model, then the Decoder takes these param-
eters and the input to predict the epidemic data in the future. Compared to BeCaked,
BeCaked* upgrades the epidemic model inside Decoder to a more complex model, the
Encoder is also integrated with a new network with higher performance. Besides, the
method to solve the differential system in Decoder is different, and a new objective
function is introduced. The next section will describe the BeCaked* model in more
detail.

= -—T-—Ea
L —EE R
(a) The SIR model Iil

(b) The SIRD model
Fig. 1. Standard SIR and SIRD model
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Fig. 2. The overall structure of our method. We use an Encoder block to encode Covid-19 time
series data into a set of parameters. This set and the input are then fed to the Decoder block to
predict the situations of the next days. These components will be discussed more deeply in later
sections.

4 The BeCaked* Model

4.1 The Overview of BeCaked™*

An overview of BeCaked™ is depicted in Fig. 2. Our method comprises an encoder and a
decoder, which try to minimize the reconstruction error between ground truth and output
from the encoding-decoding process. First, the input data from #( day to t,—; day goes
through the Encoder to produce the parameters of the epidemic model. The obtained
parameters describe the pandemic situation during this period. Then, these parameters
and the input data are fed into the Decoder to produce the prediction results from ¢
day to #,, day. Furthermore, the output of Encoder can be analyzed comprehensively by
the epidemiologist, which will provide valuable information such as the impact level of
each factor.

4.2 BeCaked* Compartmental Model

This work improves and extends the SIRD model to create a more suitable model that
describes the epidemic evolution in HCMC. In addition to the original SIRD model, we
also consider other factors such as the effects of restriction, vaccination, quarantine, and
critical population. Each individual in the population is assigned to only one of the nine
compartments which are S (Susceptible), E (Exposed), I (Infected), R (Recovered), D
(Deceased), L (Locked), V (Vaccinated), C (Critical), and Q (Quarantined).
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As acompartmental epidemic model, relations between compartments are indispens-
able, which are depicted in Fig. 3. The dynamics of the pandemic and the constraints
between parameters of the model are given in Eq. 2.

M=S+V+E+R
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Inshort, letx; = [S(¢), E(¢), I(¢), R(t), D(t), L(1), V(¢), C(¢t), Q(t)], and p be parameters
of the epidemic model, we can rewrite the system of Eq. 2 as % =f (x;, p).

Almost all people are in S, E, or [ state at first. M denotes the current number of
people that can make interaction in the community. The people in S can be vaccinated,
quarantined, or moved to restricted areas; in other words, they are transferred into V,
Q, or L with the probability of t, ¢, p, respectively (corresponding to t S, ¢S, pS in
Eq. 2a reflecting population changes). It should be noticed that minus marks indicate
decreases and plus signs show increases. Besides, the corresponding probability that
a restrictcted area comes back to normal is 6 (given in terms of pL). The vaccinated
population (V) and susceptible population (§) interacting with the exposed (E) becomes
exposed with the rate of ¢ and B (corresponding to &£ and BSE where £ denotes the
probability that one interaction between a person in E with another, ¢ and 8 are the
probability that a person is exposed after interacting with exposed people). We assume
that ¢ is lower than B because of the vaccine effectiveness. If ¢ is zero, the vaccine
offers immunizable protection against the disease. Each exposed person has a rate of
Y of staying in quarantine zones, while the quarantined ones have the rate of ¢ that
they finish the quarantine period without being positive for Covid-19 (given in terms
of wE and ¢Q). The probability that the exposed, locked, and quarantined populations
are confirmed to have Covid-19 are 5, §, and w, respectively (corresponding to nE, §L
and wQ). Each currently infected case (/) has a rate of 96 of getting serious (C) (the
term ©/). The recovery of an infected person and a critical patient is determined by the
y1 and y, rate, respectively (corresponding to y 1/ and y,C). The population of critical
patients (C) has a death rate of u and then moves to the D state (the term ©C).

4.3 Encoder

We design the Encoder based on Temporal Convolutional Network (TCN) [9] to capture
the features of all input data (i.e epidemic data of 10 days in the past, which 9 elements per
day corresponding to 9 compartments of the compartmental model that will be described
in the Sect. 4.2. The way to preprocess the raw data in the real life to obtain this input
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Fig. 3. The relations between the compartments

will be described in Sect. 5.1). TCN applies the Causal convolution rather than the usual
convolution. Causal convolution is normally used for temporal data to ensure that the
prediction at any time step does not depend on the future time steps. Since the input and
output of TCN have the same shape, an average-pooling layer is used to reduce the size
of the window. Besides, we also need a flattened layer and a fully-connected layer to get
the desired output from the Encoder. We propose to use some well-known techniques
to improve the performance, which are residual connections and attention mechanisms.
Moreover, a regularization, concretely Dropout is applied to prevent overfitting. The
output of the Encoder is a set of parameters per day mentioned in Sect. 4.2. Formally,
with the input

So Eo Io Ry Do Lo Vo Co Qo
StEi L1 Ry Dy Ly Vi Cy Oy

S9 E9 Ig Rg Dg Lg Vg Cy Qg

the Encoder will generate the output

Bo T0 Lo Lo ©o Po Lo Mo Vo Mo Y1y V20 Bo So wo o Oo
B1 T p1 A1 o1 $1 C1 M Y m i, Y2, 6181 w1 w01

Bo T9 P9 P9 Y9 P9 L9 N9 V9 N9 Yoy V24 B9 89 w9 frg By

The overall Encoder architecture is shown in Fig. 4.

ResNeXt. To improve the performance of TCN, we suggest using ResNeXt blocks [10]
in hidden layers. The main idea of ResNeXt blocks is to perform a set of transformations
with the input, and then the intermediate outputs are summed. Each transformation is
a different path from the input to the output. Thus, many routes will extract various
features, helping the model learn better.
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Fig. 4. The overview of the Encoder. In the beginning, we used a Causal Convolution Block to
process the input. This block ensures that the output only depends on the previous input (i.e.,
the number of infectious in the following days can not affect the number of current infections).
Next, a ResNeXt Block is used to extract features, and then we apply CBAM to focus on both
temporal and channel dimensions. We repeat this process three times with dilation of 1, 2, and 4,
respectively, to capture all of the 10-day input based on TCN architecture.

Convolutional Block Attention Module (CBAM). CBAM was proposed by Woo
etal. in 2018 [11]; they apply CBAM to improve CNN architectures by inferring atten-
tion maps along two separate dimensions, channel and spatial, sequentially. To apply
this idea to our model, we use 1D filters instead of 2D ones, and simultaneously two
dimensions correspond to channel and temporal. This way, we can concentrate on the
prominent features in both dimensions. We briefly summarize this idea as below.

Let F be an intermediate feature map, F € RE*L. Our modified CBAM first
calculates a channel attention map M € RC*!, then a temporal attention map M; € R'*L.

In the channel attention module, it receives the input F, then squeezes temporal
dimension by using both global max-pooling and global average-pooling parallelly.
Each branch continues to go through a shared MLP. An addition operation aggregates
the outputs of two branches. We receive the channel attention map after the gained output
is forwarded to the sigmoid function. Formally, the channel attention operation can be
written as

M (F) = o (MLP(MaxPooling (F)) + MLP(AvgPooling(F)))
= o (MLP(MaxPooling (F) + AvgPooling(F))).

In the temporal attention module, to prepare the input, the feature map F is multiplied
by M. element by element. We also use both global max-pooling and average-pooling
operations to aggregate across the channel dimension, then concatenate them to produce
temporal descriptors. We apply a causal convolutional layer and sigmoid activation to
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temporal descriptors to generate a final attention map. The temporal attention can be
written as

F =M. (F)OF
M,(F") = o (Conv([MaxPooling (F"); AvgPooling (F')])).

where o is the sigmoid activation and Conv is a 1D causal convolutional layer.
For brevity, the overall process is equivalent to

F'=M.(F)OF,
F'=M(F)OF, 3)

where © is Hadamard product and F” is the refined output.

4.4 Decoder

The Decoder receives the input data in the interval from #¢ day to 7,_; day (X) as well
as the output of the Encoder (P) to produce the prediction results from ¢ day to ¢, day
(Y). The nature of the Decoder is to solve ordinary differential equations, which is done
by the semi-implicit Euler [12] method to avoid the stiffness of the system.

4.5 Parameter Estimation

We use Weighted Mean Square Error to compute the gap between the predicted output
and the actual data, each compartment has a different weight
[,1 = l iw(x, - )%[)2,
n
=1
with w is a vector including weights for each compartment while x;, X; are vectors
from actual data and predicted output respectively:

x; =[S, E(t), (1), R(t), D(t), L(1), V (1), C (1), Q(1)),
% =[S0, E@), 1(1), R@), D), L(1), V (1), C (1), Q(1)).

However, | only considers the relation between the input data and the predicted result
according to the system of equations (2a). We adopt another loss based on the idea of
Physics-informed neural networks [13] to constrain the relation between prediction at
time-step ¢ and one at time-step 7 + 1 tightly according to the system (2a).

n—1
1 dx,
L= Z] W( dt _f(x”p))

2

Besides, to satisfy the conditions (2b), we consider an L2 regularization loss L3 to
penalize whenever these constraints are violated. In summary, the final loss is

L=L;+ XLy + L3,

where A1 and A; are adjustable weights.
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5 Empirical Evaluation

5.1 Dataset, Metrics, and Setting

We use the actual data provided by Ho Chi Minh Center for Disease Control (HCDC).
The raw data includes daily reports about the epidemic in HCMC in particular, and we
then process them to match the model’s input format. In more detail,

— R(1), D(t), V (t) are the total recovered cases, total deceased cases, total vaccinated
human at the time ¢, respectively. They are calculated by accumulating the daily data.

— I(r)isthe current infected cases, calculated by the total number of infections, excluding
the total number of recovered cases and the number of deceased.

— L(1), Q(t), C(¢) are the current number of people living inside lockdown regions,
number of people living inside quarantine zones, and emergency cases, respectively.
They are reported clearly and do not need to be preprocessed.

— E(¢) is the current number of people in latent time (exposed) and is estimated to be
four times I(¢), based on the result [14] revealing the exposure time of the Delta variant
approximate four days.

From our dataset, we split it into training and testing sets by the rates of 80_20,
respectively, and the testing set consists of the actual data over four consecutive weeks.
We use Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) as
metrics to evaluate on four indices, namely /, R, D and C. Our source code is implemented
in PyTorch. To train the model, we use Adam optimizer [15] with a cosine annealing
scheduler [16]. The initial learning rate is 0.0001, and the minimum one is 0.0000001.

5.2 Baseline Models

The typical ARIMA model is used to compare with our method. ARIMA is a well-known
model for time-series forecasting. Nevertheless, ARIMA is a univariate model that can
only receive and predict one variable, so we build a different ARIMA model for each
index. In addition, we also adopt an RNN-based baseline that is a two-layer LSTM and
a multivariate single-step model (named Pure-LSTM, which is similar to the method
of A Ghany mentioned in the Sect. 3). It forecasts all four indices simultaneously. To
measure the effectiveness of the Encoder based on TCN, we also consider L-BeCaked,
a model that is quite similar to BeCaked™, but its encoder is based on LSTM.

5.3 Quantitative Results

Both MSE and MAPE indicate that the higher an error, the further the distance between
the prediction and the actual data. As shown in Table 1, our method performs better
than the others. Though Pure-LSTM is more complex than ARIMA, it is less effective.
Nevertheless, there is a considerable gap between ARIMA and our method. Especially
when HCMC has attempted to reduce severe cases per day, predicting the number of
critical cases is essential, for which our approach is well qualified.
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5.4 Model Analysis

To better understand the advantages of our method, it should be noted again that
BeCaked* is explainable as further discussed.

Table 1. Performance of BeCaked™ is consistently better than other baselines.

Model MAE MAPE
1 R D C 1 R D C
ARIMA 9707.786 | 12519.643 | 458.571 |704.036 |0.062 |0.050 |0.027 |0.615

Pure-LSTM | 10239.042 |21853.690 | 431.653 |765.448 | 0.066 |0.088 |0.026 |0.661
L-BeCaked | 9103.990 |2320.005 |1852.554 |954.378 | 0.058 |0.009 |0.111 | 0.822
BeCaked* | 3663.312 6481.097 |309.719 | 122.656 | 0.023 | 0.026 | 0.019 | 0.104

Explainability of BeCaked*. BeCaked* can serve not only as a regression system with
good fit curves for compartments of the epidemic model (i.e Infected, Exposed, etc.)
but also as an analytical system to generate the parameters of the epidemic model with
an explanation of the regressed value at the same time. Therefore, the parameters of the
epidemic model can be used by epidemiologists to comprehensively analyze the factors
influencing the evolution of the pandemic. For instance, if the number of infected people
becomes alarming at present, we can study and figure out the major reasons causing
such a situation. Hence, we have solid bases to alleviate the pandemic.

As mentioned above, one key reason why our approach can be explainable is thanks
to the parameters of the epidemic model. Given the input data, the Encoder not only
generates the parameters reflecting the pandemic situation but also makes sure these
parameters are highly accurate and reliable. The Encoder captures the relationships
between days in the input data, e.g, increases or decreases in states, and encodes them
in terms of the parameters of the epidemic model.

To explore the parameters, we can apply a method, called sensitivity analysis. It is
usually used to figure out how changes in input variables affect target variables. In this
work, we use the LHS-PRCC method to estimate the sensitivity of the model’s param-
eters. In particular, a high sensitivity value indicates that the corresponding parameter
has a significant impact on figures of the pandemic. Thus, we focus more on solutions
that can mitigate the effects of the parameters which are making the pandemic worse.
The obtained results are shown in Fig. 5.

Our work shows that the number of infected cases mostly depends on quarantine (cor-
responding to w, ¢, ¢), vaccination (corresponding to t), and lockdown (corresponding
to p). The significant sensitivities of w and ¢ with the number of infected cases indi-
cate that most people in quarantine areas are more likely to be infected. Significantly,
the contact rates (corresponding to 8 and ¢) do not significantly affect the number of
infected cases. This can be explained by the city enforcing a curfew during the period
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Fig. 5. PRCC scores of parameters with / compartment. The closer the absolute value of this
point is to one, the more sensitive the corresponding parameter is to the model.

we apply the model, people having fewer interactions with each other, or the vaccination
has probably reduced the risk of infection by contact.

Looking at this result, we can suggest to policymakers that our city can release the
lockdown carefully and slowly while also improving the quarantine strategy.

6 Conclusion

We proposed BeCaked*, an extended model of the SIRD integrated with Deep Learning
to estimate the parameters describing the evolution of the pandemic. The results provided
by our method are more accurate and liable than other baselines. Another advantage of
BeCaked* is the explainability, which is illustrated to explain the situation of HCMC
during the fourth wave starting from May 2021. Furthermore, BeCaked™ can give results
displayed visually for end-users and can be used by epidemiologists to analyze the
evolution of the pandemic.
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