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Abstract. Motor imagery electroencephalography (MI-EEG) decoding
is challenged by noisy, non-stationary signals, high variability, and lim-
ited labeled data. We propose FA-GPNet, a unified framework that
integrates Filter Bank Common Spatial Pattern (FBCSP) for multi-
band spectral-spatial feature extraction, a deep autoencoder for non-
linear compression and noise reduction, and a Gaussian Process Classi-
fier (GPC) for probabilistic, uncertainty-aware predictions. Unlike con-
ventional FBCSP pipelines that rely on manual feature selection and
deterministic classifiers, FA-GPNet replaces heuristic ranking with data-
driven latent representation learning and leverages GP’s Bayesian frame-
work for calibrated outputs. Under within-subject evaluation, FA-GPNet
achieves 78.19% mean accuracy on BCI Competition IV-2b, surpassing
strong traditional baselines and multiple deep networks, while remaining
competitive with CapsNet. On the HCM-IU hand-binary MI dataset, FA-
GPNet outperforms the well-optimized classical baseline. These results
demonstrate that FA-GPNet offers a robust, reproducible, and efficient
solution for MI-EEG decoding.

Keywords: Motor Imagery - Electroencephalography (EEG) -
Auto-Encoder - Gaussian Process - Hybrid Model
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Electroencephalography (EEG) is a non-invasive neuroimaging technique that
records brain activity via scalp electrodes [5]. Due to its affordability, portability,
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and high temporal resolution, EEG has become a cornerstone in brain—computer
interface (BCI) research [15]. Among various BCI paradigms, motor imagery
(MI)—where individuals imagine movements without physical execution—has
attracted significant attention for applications in neurorehabilitation and assis-
tive technologies [6].

Compared to evoked paradigms, MI can elicit neural activity spontaneously
across multiple brain regions without external stimuli [14]. However, EEG sig-
nals are notoriously noisy, non-stationary, and vary significantly both within
and across sessions [9]. These challenges make MI decoding difficult, particu-
larly under limited labeled data. Traditional pipelines typically employ Common
Spatial Patterns (CSP) [4,10,17] or its extension Filter Bank CSP (FBCSP) [3],
followed by conventional classifiers such as Support Vector Machines (SVM) or
Linear Discriminant Analysis (LDA). Dimensionality reduction methods (e.g.,
PCA, LDA projection) are often added to further compress features [11,18].
While these linear methods are simple and effective to some extent, they are
limited in capturing the nonlinear and complex structure of EEG data [18].
Deep learning has emerged as a powerful alternative. Autoencoders (AEs), in
particular, provide unsupervised nonlinear feature extraction and denoising,
yielding compact latent representations that are often more discriminative for
classification [8,21]. Yet, the combination of handecrafted spectral-spatial fea-
tures (e.g., FBCSP), deep representation learning, and Bayesian probabilistic
modeling remains underexplored in MI decoding. Gaussian Process Classifiers
(GPCs) [22], with their ability to provide calibrated uncertainty estimates, are
especially attractive in noisy EEG contexts, but have rarely been integrated into
such hybrid frameworks.

To address these limitations, we introduce a unified framework that first
extracts spectral-spatial features using FBCSP, compresses them with a deep
Autoencoder to obtain nonlinear and noise-reduced representations, and finally
classifies with a GPC to achieve probabilistic decision-making. We evaluate the
framework on the public BCI Competition IV 2b dataset [20] and the pri-
vate HCMIU — Motor Imagery Hand-Binary Dataset. Our approach improves
balanced accuracy by +5.2% points over a strong baseline (FBCSP+SVM,
77.4%—82.6%) and achieves superior results compared to several recently pub-
lished deep learning models on BCI Competition IV 2b. In summary, our con-
tributions are as follows.

— We propose a hybrid framework that integrates handcrafted spectral-spatial
features, nonlinear representation learning with Autoencoders, and proba-
bilistic classification with Gaussian Processes for MI-EEG decoding.

— We replace manual feature selection with data-driven nonlinear compression
while simultaneously providing calibrated uncertainty estimates, improving
both accuracy and reliability in noisy EEG settings.

— We conduct extensive experiments on two EEG datasets, demonstrating con-
sistent improvements over strong baselines and competitive or superior per-
formance compared to recent deep learning approaches.
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2 Related Works
2.1 Traditional Methods for EEG Classification

Motor-imagery (MI) pipelines have long relied on spatial-spectral features
obtained with the Common Spatial Pattern (CSP) algorithm and, more recently,
its Filter-Bank extension (FBCSP) [3]. In a typical FBCSP workflow, EEG is
decomposed into multiple frequency bands, CSP is applied to each band, and the
resulting log-variance features are manually ranked, with a subset heuristically
selected—commonly via mutual information or Fisher score—before classifica-
tion using SVM, Random Forest, or k-Nearest Neighbour [3,12]. However, this
manual feature selection is highly sensitive to both selection criteria and the
number of retained features, often requiring extensive trial-and-error and expert
tuning. Consequently, it risks introducing selection bias—where features opti-
mized on the training set may not generalize robustly to the test set—and can
result in models that are highly sensitive to the specific feature selection proce-
dure, limiting reproducibility and reliability [12].

2.2 Dimensionality Reduction and Representation Learning

To overcome these limitations, recent work has shifted towards data-driven
dimensionality reduction. While linear methods such as Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) offer simplicity, they
fail to capture the complex, nonlinear structures inherent in EEG signals [15].
In contrast, deep Autoencoders (AEs) have emerged as a powerful unsupervised
alternative, learning compact, task-relevant latent representations without man-
ual intervention [19]. Notably, AEs automatically discover meaningful nonlinear
feature combinations, thereby enhancing robustness and generalization across
sessions of the same subject and experimental sessions [13].

2.3 Probabilistic Modeling and Gaussian Process Classifiers

Conventional classifiers such as SVM and LDA provide only deterministic pre-
dictions, lacking principled uncertainty quantification—a critical requirement for
EEG-based brain—computer interfaces (BCIs), where signals are inherently noisy
and data scarcity is common [12]. Gaussian Process Classifier (GPC) offers a rig-
orous Bayesian alternative, providing calibrated probabilistic predictions crucial
for reliable decision-making in BCI applications [22]. Although traditional GPC
suffer from scalability issues with high-dimensional inputs [16], coupling GPC
with AE-derived compact representations can address these challenges, enabling
scalable and uncertainty-aware EEG classification.

2.4 Hybrid Approaches and Research Gap

Although several studies have combined FBCSP-derived features with deep
learning methods, they typically retain a separate feature-selection stage or rely
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on deterministic classifiers, thus failing to fully leverage probabilistic model-
ing [1,12]. To the best of our knowledge, no existing approach unifies handcrafted
spatial-spectral feature extraction (FBCSP), nonlinear representation learning
(Autoencoder), and Bayesian probabilistic classification (Gaussian Process) into
a single, fully integrated pipeline.

3 FA-GPNet Architecture

Raw EEG

Latent space

uuuuuu

Fig. 1. Overview of FA-GPNet. Raw EEG is band-pass filtered, multi-band CSP
features are extracted and concatenated, compressed by an autoencoder, and classified
with a Gaussian Process using RBF kernel.

Our proposed FBCSP-AE-GP framework is designed to robustly capture motor
imagery spectro-spatial signatures, while effectively addressing the data scarcity
and high variability typical of within-subject EEG studies. The overall pipeline is
illustrated in Fig. 1. At its core, the architecture proceeds through three sequen-
tial stages:

(i) Spectro-spatial feature extraction: Standardize and band-limit the raw
EEG, then apply FBCSP to extract discriminative features across multiple
frequency bands.

(ii) Nonlinear dimensionality reduction: Use a deep Autoencoder to obtain
compact, task-relevant latent codes.

(iii) Probabilistic classification: Employ a Gaussian Process for Bayesian
inference and calibrated confidence estimation.
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3.1 Spectro-Spatial Feature Extraction

To robustly extract discriminative representations from EEG signals, we adopt
the Filter Bank Common Spatial Pattern (FBCSP) technique as the first stage
of our framework.
Let X € REXT denote the standardized multi-channel EEG segment, where
C' is the number of channels and T is the number of time points. The raw EEG
signal is first decomposed into B = 9 non-overlapping frequency sub-bands by a
bank of band-pass filters. Specifically, we divide the frequency axis into B = 9
non-overlapping sub-bands: 4-8 Hz, 8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, 24—
28 Hz, 28—-32 Hz, 32-36 Hz, and 36—40 Hz, following standard motor imagery BCI
protocols:
X® = BandpassFilter,(X), b=1,2...,B (1)

For each frequency band b, the Common Spatial Pattern (CSP) algorithm
is applied to extract spatial filters that maximize variance differences between
motor imagery classes. Given the band-limited signal X(®), CSP solves the fol-
lowing optimization problem:

T ()
w®) — argmax W(b)zl X)
W OWT (21 + 50 )W

(2)

where 25") and Egb) are the covariance matrices of the two classes in band b.

The spatially filtered signals are then obtained as:
7,.(0) — (W(b))Tx(b) (3)

From each CSP-projected sub-band signal, we extract log-variance features with
(K = 2) as follows:

£® —1og (Var (zgﬁ)), k=1,... K (4)

where Z ,E,b) is the output of the k-th CSP component in the b-th frequency band.
Finally, features from all sub-bands and CSP components are concatenated
to form a high-dimensional spectro-spatial feature vector:

T
1 2 2 B B
f= 1(1)7---7 I(()v.fl()y, ](()’7f1( )’.._’ I(():| eRBXK (5)

This representation serves as the input for subsequent nonlinear dimensionality
reduction.

3.2 Nonlinear Compression with an Autoencoder

To replace manual feature selection and capture nonlinear relationships among
FBCSP features, we employ a deep autoencoder (AE) as a dimensionality reduc-
tion module. Let f € R%» denote the FBCSP feature vector of a trial, standard-
ized using z-score normalization (statistics computed on the training split only).
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The AE consists of an encoder Eg : R%» — R% and a decoder D, : R% — R%n,
jointly trained to minimize the mean squared reconstruction error:

N
1
Lap =3 D If — Dy(Es(£:))]l3-
i=1

Training. We optimize the AE with Adam (learning rate 1073, weight decay
10~?) for at most 250 epochs, using early stopping with patience = 10 on valida-
tion reconstruction loss; the best checkpoint is restored. Unless otherwise stated,
we set the latent dimension to d, = 8. After training, the encoder is frozen and
its latent codes are used for probabilistic classification. The architecture and
hyperparameters of the AE are provided in Table 1.

Table 1. Autoencoder architecture (fully connected).

Block|Layer Hyper-parameters|Output shape|Activation

I Input din (feature dim) |(N, dip) —

11 Densel 64 units (N, 64) Linear
BatchNorm1d|— (N, 64) —
LeakyReLU |lao=0.2 (N, 64) LeakyReLU

IIT  |Dense2 32 units (N, 32) Linear
BatchNorm1d —~ (N, 32) -
LeakyReLU lao=10.2 (N, 32) LeakyReLU

IV  |Latent d. units (N,d) Linear

A% Dense3 32 units (N, 32) Linear
BatchNorm1d— (N, 32) —
LeakyReLU la= 0.2 (N, 32) LeakyReLU

VI  |Dense4 64 units (N, 64) Linear
BatchNorm1d|- (N, 64) —
LeakyReLU la=0.2 (N, 64) LeakyReLU

VII |Output din units (N, din) Linear

3.3 Probabilistic Classification with Gaussian Processes

Given AE latents z; € R%, we use a Gaussian Process Classifier (GPC) with
logistic link:

f(z) ~ GP(0,ko(2,2))),  yil| fi ~Bernoulli{o(f;)), o(t) = 1=. (6)

We adopt an RBF kernel ky(z,2) = oF exp( — ||z — 2/[|*/(2%)), whose hyper-
parameters § = {oy,(} are learned by maximizing the Laplace-approximated
marginal likelihood via L-BFGS-B. With the Laplace approximation, letting
W = diag(a(fi) 1- O’(fz)]) at the posterior mode f, the posterior is approxi-
mated by

gf) =N, =), Z=K'+W)L (7)
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Calibration Metrics. We report Expected Calibration Error (ECE) and Max-
imum Calibration Error (MCE) with M = 10 equal-width bins {B,,}¥_,. For
bin B,, of size n,,,

1 ) 1 .
acc(B,,) = EZ {g; =y}, conf(B,,)= EZ Di,
1€By, 1€Bpm
Mo
ECE = Z ]Gl |acc(Bm) — conf(Bm)|, MCE = max |acc(Bm) — conf(Bm)|.
m=1

ECE captures average miscalibration, MCE highlights the worst-bin deviation.

4 Experiments

We extract multi-band FBCSP features and evaluate two selectors, SelectKBest
(SKB) and Mutual Information-Based Individual Feature (MIBIF) [2]. Selected
features are z-scored and fed to standard classifiers (KNN, SVM-RBF, Ran-
dom Forest, Naive Bayes, LDA, and GPC-RBF) under the same subject-specific
splits. For context only, we also reference a literature-reported deep result (Cap-
sNet; Sensors 2019) [7] rather than re-training deep baselines. Comparative
results are presented in Sect. 5.

4.1 BCI Competition IV — Dataset 2b

We evaluated our method on BCI Competition IV — Dataset 2b, a benchmark
MI-EEG corpus from Graz University of Technology [20]. Nine healthy volun-
teers each completed five sessions: two screening sessions without feedback and
three feedback sessions with a real-time “smiley” reinforcement (see Fig. 2). EEG
was recorded from electrodes C3, Cz, C4 at 250 Hz. Each session comprised left-
vs-right hand imagery trials. In screening sessions, the timeline was: 0s fixation
(+) — 3s auditory cue — 1.25s arrow cue — 4s imagery — 1.5s rest (total 9s).
In smiley-feedback sessions, the fixation was replaced by a neutral grey smiley,
and during the imagery period, the smiley provided real-time visual feedback
according to the subject’s performance. Sessions 1-2 contained 120 trials; 3-5
contained 160 trials. The first three sessions of each subject were used exclu-
sively for training, while the remaining two were reserved for evaluation. In our
experiments, we used the 4-second imagery segment from 3s to 7s.

4.2 HCMIU — Motor Imagery Hand—Binary Dataset

To validate our method’s robustness on small-scale EEG datasets, we employed
a hand-binary dataset collected by the Brain Health Lab at Vietnam National
University — International University. The dataset comprises EEG recordings
from 14 healthy undergraduates performing motor imagery (MI) tasks, captured
with a 32-channel Emotiv Flex headset at 128 Hz. Each trial commenced with a
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Fig. 2. Protocol in BCI Competition IV 2b: (a) Screening session with directional arrow
cue and no feedback, (b) Smiley feedback session with real-time visual reinforcement.

2-second visual cue, followed by an auditory prompt instructing participants to
imagine specific motor actions for 4 s without physical execution (see Fig. 3). Par-
ticipants were randomly divided into three groups: G1 viewed hand movement
images; G2 observed cursor images; and G3 observed cursor images with real-
time Event-Related Desynchronization (ERD) feedback, enabling performance
adjustments. In total, the dataset comprised 1,140 samples (see Table 2), which
were analyzed through subject-specific 5-fold cross-validation. In our experi-
ments, we used the 4-second imagery segment from 4s to 8s.

5 Results and Discussion

Comparison with FBCSP Pipelines (Table 3). On BCI Competition IV-
2b, FA-GPNET achieves the highest average accuracy across subjects (78.19%),

Gl G2 G3

Image-cue Arrow-cue-feedback
e . ’ Arrow-cue
G1received instructions with ERD/ERS Visualization

letters and symbols & Verbal Feedback

Imagery Period

Rest Random Cue (Clench with a ball) L Next trial i
(right/left) i

0 2 4

o®©

Timeins

Fig. 3. Protocol in HCMIU — Motor Imagery Hand-Binary Dataset: Image-cue (G1),
Arrow-cue (G2), and Arrow-cue-feedback (G3). All cues were displayed in Vietnamese.
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Table 2. The HCMIU MI-EEG dataset: Number of samples for each subject.

Subject|F10|F11/F12 F14F15F16 F18 F20|F22|F24/F25 F26 F27F29 Total
Dataset|114/90 90 |30 (90 |60 (90 90 |96 90 |84 84 |72 |60 1140

outperforming both FBCSP+SKB and FBCSP+MIBIF configurations. Subject-
wise breakdown in Table 3 shows that the gains are not driven by a single sub-
ject: FA-GPNET improves over traditional pipelines on several challenging sub-
jects (e.g., S2, S3, S5, S7), indicating that the method is robust to inter-subject
variability. These results support the design choice of replacing manual feature
selection with a deep, nonlinear compression stage (autoencoder) and using a
probabilistic classifier (Gaussian Process) that provides calibrated predictions.

Table 3. Per-subject classification accuracy (%) on the BCI Competition IV-2b
dataset. Bold denotes the best result per subject; the last row reports the average
across subjects.

Subject |SelectKBest (SKB) MIBIF FA-GPNet
KNNSVMRF NB |[LDA GP |[KNNSSVMRF |[NB |[LDA GP
64.10(66.20/67.20/66.20/67.20 65.90 61.30/64.40/65.90/64.10 |65.60 |65.60 |71.88
48.90/46.10/45.7050.00/51.10 [47.10 |48.90/46.1045.70/50.00 {51.10 |47.10 |59.64
50.60/57.20/55.00/55.90/55.00 55.60 [51.90/56.2055.30/57.20 [54.10 [50.90 |57.50
85.00(87.20/90.6086.30(95.00 [95.00 [86.90/87.80(91.60/86.90 {95.30/94.40 (93.44

85.60(86.30/85.9086.90(88.70 [87.50 [88.10/86.90(86.90/89.40|89.40|89.40(89.38

74.70/78.70(77.20/80.00(78.70 |79.10 (72.20/77.80/75.90/78.70 [77.80 |78.40 |83.43
70.30/74.40(77.50|73.10|75.30 |75.60 |67.50/72.50/73.10/73.80 (75.00 [75.90 |77.81
74.40/84.70(81.90(79.7086.60/86.60|67.80/78.70/74.10,72.80 (79.40 72.80 85.31

70.30/80.90(78.10|77.20/79.40 |80.00 69.10/80.90/77.80/80.00 |81.20 [80.60 |85.31
Average 69.32(73.52|73.23|72.8175.22 [74.71 68.19/72.3771.81|72.54 |74.22 |72.89 |78.19

© 00 N O Ut s W N
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Table 4. Per-subject accuracy (%) on BCI Competition IV-2b. Figures for ShallowNet,
DeepNet, EEGNet, CNN, and CapsNet are quoted verbatim from [7] (their original
preprocessing/evaluation; no re-training). They are provided for context only and are
not directly comparable to our FA-GPNet results, which are obtained under a single
fixed pipeline.

Subject |ShallowNet/DeepNet EEGNet| CNN|CapsNet|FA-GPNet(Proposed)
1 71.56 67.25 |67.18 |69.78/78.75 |71.88
2 53.57 56.10 58.21 54.75|55.71 59.64
3 53.12 54.87 55.62  |52.88/55.00 57.50
4 95.93 94.52  95.31 195.31/95.93 |93.44
5 85.00 84.59  86.87 85.91183.12 |89.38
6 76.87 74.46 77.50 78.03/83.43 |83.43
7 76.56 77.03 76.87  169.75/75.62 77.81
8 85.93 87.75 [89.68 |87.56/91.25 |85.31
9 82.18 79.25 [80.00 |80.91]87.18 85.31
Average|75.63 75.10 |76.36  |74.9978.44 |78.19

Comparison with Compact Deep Networks (Table 4). Against prior com-
pact CNN baselines reported for context—ShallowNet, DeepNet, EEGNet, stan-
dard CNN, and CapsNet—FA-GPNET is competitive with the strongest model:
its average accuracy (78.19%) is within 0.25 points of CapsNet (78.44%) while
surpassing the other deep baselines in Table4. Notably, FA-GPNET attains
this performance without end-to-end deep classification and while preserving
the interpretability of handcrafted spectral-spatial features and the calibrated
uncertainty of a Bayesian classifier. This suggests that combining classical pri-
ors (FBCSP) with data-driven compression and Bayesian inference can match
the accuracy of compact deep models under within-subject protocols, often with
more transparent decision factors.

Generalization to HCMIU MI-EEG Dataset (Table 5). On the small,
high-variability HCMIU hand-binary MI dataset, FA-GPNET achieves the best
average accuracy (57.15%), outperforming all FBCSP+feature-selection base-
lines in Table 5. The consistent subject-wise gains under scarce labeled data sup-
port the claim that the hybrid handcrafted—deep—Bayesian design is well-suited
to low-data regimes, where purely supervised deep classifiers tend to overfit or
require heavy regularization.
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Table 5. The HCMIU hand-binary MI dataset: per-subject accuracy (%) under within-
subject 5-fold CV. We compare FBCSP baselines with feature selection (SKB, MIBIF)
across classical classifiers against our FA-GPNet. The Average row macro-averages
across subjects; best per subject is bold.

Subject [SelectKBest (SKB) MIBIF FA-GPNet
KNNSVMRF |[NB [LDAGP KNNSVMRF |NB |[LDA|GP
F10 57.8757.04/57.04/57.83/59.60/59.60|54.31|55.30/55.18/50.00/56.09|56.96/64.00
F11 55.56/54.44/60.0047.78/58.89/53.33/50.0052.22|55.56/50.00|52.22/51.11/63.33
F12 50.00/45.56/45.56/47.78/41.11/40.00/46.67/40.00/45.56|42.22|42.22/45.56/53.33
F14 36.6736.67|36.67(33.33/36.6736.6743.33/36.67|36.67|36.67|36.6733.33|53.33
F15 52.22/55.56/56.67|54.44/51.11|48.89/54.4452.22|53.33/51.11|53.33|53.33/62.22
F16 38.3341.67|45.00141.67|33.33|45.00/43.33/43.33/45.00/41.67/43.33/43.33/51.67
F18 54.44/53.33/53.33|53.33/54.44/54.44/52.22/51.11|52.22|51.11|52.22|53.33/61.11
F20 53.33/46.67|47.78/46.67 54.44/54.44|54.44/52.22|51.11|51.11|51.11|54.44/60.00
F22 41.79\44.6342.22|42.22|42.22/41.76|42.00/42.74/41.67/42.22/41.19/44.63/50.00
F24 51.11/50.00/52.22|51.11|44.44(43.33/47.78/50.00/48.89/48.89/46.67|51.11|54.44
F25 54.44/53.33/53.33/51.11/51.11]54.44(52.22|53.33/51.11|52.22/53.33|52.22|55.96
F26 53.33/50.00150.00/53.33/50.00/50.00/53.33/52.22|52.22/51.11|52.22/51.11/57.06
F27 51.25/51.11/50.00/53.33/51.11]53.33|50.00|52.22|52.22|52.22|53.33|52.22|56.95
F29 51.11/46.67|51.11|52.22/48.89/48.89|54.44/54.44/54.44/51.11|51.11/54.44|56.67
Average|50.10/49.04/50.06/49.01|48.38|48.86/49.89/49.14/149.6547.97/48.93/49.7957.15

Calibration and Uncertainty (Table 6). We report Expected Calibration
Error (ECE) and Maximum Calibration Error (MCE) per subject using equal-
width binning with M = 10 bins. Across the nine IV-2b subjects, the mean
ECE is = 0.080 and the mean MCE is ~ 0.232; five subjects have ECE < 0.10,
and two subjects fall below 0.05. Subject 3 exhibits perfect calibration under
this metric set (ECE/MCE = 0.000), whereas Subject 4 shows the largest MCE
(= 0.373), indicating room for improvement on difficult cases.

Table 6. Per-subject calibration on BCI Competition IV-2b: Expected Calibration
Error (ECE) and Maximum Calibration Error (MCE) using equal-width binning with
M =10 on each subject’s test split. Lower is better.

Subject|1 2 3 4 5 6 7 8 9
ECE ]0.1641/0.0352|0.0000/0.0589/0.1023/0.1067|0.0681|0.0803/0.1033
MCE 0.3151/0.1797/0.0000/0.3734/0.3047|0.3681/0.1539/0.1549/0.2401
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6 Conclusion

We presented FA-GPNet, a novel hybrid framework that integrates FBCSP,
Autoencoder, and Gaussian Process for motor imagery EEG decoding. Experi-
ments on the BCI Competition IV-2b and HCMIU - Hand-Binary Motor Imagery
dataset show consistent improvements over classical pipelines and competitive
performance with compact deep networks. These results highlight the value
of combining handcrafted priors, deep representations, and Bayesian inference,
opening avenues for more reliable and interpretable BCI systems.

Future Work. We will extend the model to multi-class MI evaluation—e.g., the
4-class BCI Competition IV-2a—and aim to improve performance through data
augmentation.
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