
FA-GPNet: When Gaussian Process 
Meets Auto-Encoder and FBCSP - A 
Hybrid Model for Motor Imagery 

Classification 

Trung M. Pham1,3 , Hieu M. Pham1,3 ,  Vi  K.  Nguyen1,3 , 
Truong D. Tran1,3 ,  Long  S.  T.  Nguyen1,3 , Duc Q. Nguy en1,3 ,

Huong T. T. Ha2,3 , and Tho T. Quan1,3(B)

1 URA Research Group, Faculty of Computer Science and Engineering, Ho Chi Minh 
City Universit y of Technology (HCMUT), Ho Chi Minh City, Vietnam

qttho@hcmut.edu.vn 
2 School of Biomedical Engineering, Ho Chi Minh City International University 

(HCMIU), Ho Chi Minh City, Vietnam 
3 Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam

Abstract. Motor imagery electroencephalography (MI-EEG) decoding 
is challenged by noisy, non-stationary signals, high variability, and lim-
ited labeled data. We propose FA-GPNet, a unified framework that 
integrates Filter Bank Common Spatial Pattern (FBCSP) for multi-
band spectral–spatial feature extraction, a deep autoencoder for non-
linear compression and noise reduction, and a Gaussian Process Classi-
fier (GPC) for probabilistic, uncertainty-aware predictions. Unlike con-
ventional FBCSP pipelines that rely on manual feature selection and 
deterministic classifiers, FA-GPNet replaces heuristic ranking with data-
driven latent representation learning and leverages GP’s Bayesian frame-
work for calibrated outputs. Under within-subject evaluation, FA-GPNet
achieves 78.19% mean accuracy on BCI Competition IV-2b, surpassing
strong traditional baselines and multiple deep networks, while remaining
competitive with CapsNet. On the HCM-IU hand-binary MI dataset, FA-
GPNet outperforms the well-optimized classical baseline. These results
demonstrate that FA-GPNet offers a robust, reproducible, and efficient
solution for MI-EEG decoding.

Keywords: Motor Imagery · Electroencephalography (EEG) · 
Auto-Encoder · Gaussian Process · Hybrid Model

1 Introduction 

Electroencephalography (EEG) is a non-invasive neuroimaging technique that 
records brain activity via scalp electrodes [5]. Due to its affordability, portability,
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and high temporal resolution, EEG has become a cornerstone in brain–computer
interface (BCI) research [15]. Among various BCI paradigms, motor imagery 
(MI)—where individuals imagine movements without physical execution—has 
attracted significant atten tion for applications in neurorehabilitation and assis-
tive technologies [6]. 

Compared to evoked paradigms, MI can elicit neural activity spontaneously 
across multiple brain regions without external stimuli [14]. However, EEG sig-
nals are notoriously noisy, non-stationary, and vary significan tly both within
and across sessions [9]. These challenges make MI decoding difficult, particu-
larly under limited labeled data. Traditional pip elines typically employ Common
Spatial Patterns (CSP) [4,10,17] or its extension Filter Bank CSP (FBCSP) [3], 
followed by conventional classifiers such as Support Vector Machines (SVM) or 
Linear Discriminant Analysis (LDA). Dimensionality reduction methods (e.g.,
PCA, LDA projection) are often added to further compress features [11,18]. 
While these linear methods are simple and effective to some extent, they are 
limited in capturing the nonlinear and complex structure of EEG data [18]. 
Deep learning has emerged as a powerful alternative. Autoencoders (AEs), in 
particular, provide unsupervised nonlinear feature extraction and denoising, 
yielding compact latent representations that are often more discriminative for
classification [8,21]. Yet, the combination of handcrafted spectral–spatial fea-
tures (e.g., FBCSP), deep representation learning, and Bayesian probabilistic 
mo deling remains underexplored in MI decoding. Gaussian Process Classifiers
(GPCs) [22], with their ability to provide calibrated uncertainty estimates, are 
especially attractive in noisy EEG contexts, but have rarely been integrated into
such hybrid frameworks.

To address these limitations, we introduce a unified framework that first 
extracts spectral–spatial features using FBCSP, compresses them with a deep 
Autoencoder to obtain nonlinear and noise-reduced representations, and finally 
classifies with a GPC to achieve probabilistic decision-making. We evaluate the
framework on the public BCI Competition IV 2b dataset [20] and the pri-
vate HCMIU – Motor Imagery Hand–Binary Dataset. Our approach improves 
balanced accuracy by + 5.2% points over a strong baseline (FBCSP+SVM,
77.4%. →82.6%) and achieves superior results compared to several recently pub-
lished deep learning models on BCI Competition IV 2b. In summary, our con-
tributions are as follows.

– We propose a hybrid framework that integrates handcrafted spectral–spatial 
features, nonlinear representation learning with Autoencoders, and proba-
bilistic classification with Gaussian Processes for MI-EEG decoding.

– We replace manual feature selection with data-driven nonlinear compression 
while simultaneously providing calibrated uncertainty estimates, impro ving
both accuracy and reliability in noisy EEG settings.

– We conduct extensive experiments on two EEG datasets, demonstrating con-
sistent improvements over strong baselines and competitive or superior per-
formance compared to recent deep learning approaches.
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2 Related Works 

2.1 Traditional Methods for EEG Classification

Motor-imagery (MI) pipelines have long relied on spatial–spectral features 
obtained with the Common Spatial Pattern (CSP) algorithm and, more recently,
its Filter-Bank extension (FBCSP) [3]. In a typical FBCSP workflow, EEG is 
decomposed into multiple frequency bands, CSP is applied to each band, and the 
resulting log-variance features are manually ranked, with a subset heuristically
selected—commonly via mutual information or Fisher score—before classifica-
tion using SVM, Random Forest, or k-Nearest Neighbour [3,12]. However, this 
manual feature selection is highly sensitive to both selection criteria and the 
number of retained features, often requiring extensive trial-and-error and expert 
tuning. Consequently, it risks introducing selection bias—where features opti-
mized on the training set may not generalize r obustly to the test set—and can
result in models that are highly sensitive to the specific feature selection proce-
dure, limiting reproducibility and reliability [12]. 

2.2 Dimensionality Reduction and Represen tation Learning

To overcome these limitations, recent work has shifted towards data-driven 
dimensionality reduction. While linear methods such as Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) offer simplicity, they
fail to capture the complex, nonlinear structures inherent in EEG signals [15]. 
In contrast, deep Autoencoders (AEs) have emerged as a powerful unsupervised 
alternative, learning compact, task-relevant latent representations without man-
ual intervention [19]. Notably, AEs automatically discover meaningful nonlinear 
feature combinations, thereby enhancing robustness and generalization across 
sessions of the same subject and experimental sessions [13]. 

2.3 Probabilistic Modeling and Gaussian Process Classifiers

Conventional classifiers such as SVM and LDA provide only deterministic pre-
dictions, lacking principled uncertainty quantification—a critical requirement for 
EEG-based brain–computer in terfaces (BCIs), where signals are inherently noisy
and data scarcity is common [12]. Gaussian Process Classifier (GPC) offers a rig-
orous Bayesian alternative, providing calibrated probabilistic predictions crucial
for reliable decision-making in BCI applications [22]. Although traditional GPC 
suffer from scalability issues with high-dimensional inputs [16], coupling GPC 
with AE-derived compact representations can address these challenges, enabling 
scalable and uncertainty-aware EEG classification.

2.4 Hybrid Approaches and Researc h Gap

Although several studies have combined FBCSP-derived features with deep 
learning methods, they typically retain a separate feature-selection stage or rely
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on deterministic classifiers, thus failing to fully lev erage probabilistic model-
ing [1,12]. To the best of our knowledge, no existing approach unifies handcrafted 
spatial–spectral feature extraction (FBCSP), nonlinear representation learning 
(Autoencoder), and Bayesian probabilistic classification (Gaussian Process) into
a single, fully integrated pipeline.

3 FA-GPNet Architecture 

Fig. 1. Overview of FA-GPNet. Raw EEG is band-pass filtered, multi-band CSP 
features are extracted and concatenated, compressed by an autoencod er, and classified
with a Gaussian Process using RBF kernel.

Our proposed FBCSP–AE–GP framework is designed to robustly capture motor 
imagery spectro-spatial signatures, while effectively addressing the data scarcity 
and high variability t ypical of within-subject EEG studies. The overall pipeline is
illustrated in Fig. 1. At its core, the architecture proceeds through three sequen-
tial stages:

(i) Spectro-spatial feature extraction: Standardize and band-limit the raw 
EEG, then apply FBCSP to extract discriminative features across multiple
frequency bands.

(ii) Nonlinear dimensionality reduction: Use a deep Autoencoder to obtain 
compact, task-relevant latent codes.

(iii) Probabilistic classification: Employ a Gaussian Process for Bayesian
inference and calibrated confidence estimation.
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3.1 Spectro-Spatial Feature Extraction

To robustly extract discriminative representations from EEG signals, we adopt 
the Filter Bank Common Spatial Pattern (FBCSP) technique as the first stage
of our framework.

Let .X ∈ R
C×T denote the standardized multi-channel EEG segmen t, where

.C is the number of channels and . T is the number of time points. The raw EEG 
signal is first decomposed into .B = 9 non-overlapping frequency sub-bands by a 
bank of band-pass filters. Specifically, we divide the frequency axis into . B = 9
non-overlapping sub-bands: 4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 20–24 Hz, 24– 
28 Hz, 28–32 Hz, 32–36 Hz, and 36–40 Hz, following standard motor imagery BCI
protocols:

.X(b) = BandpassFilterb(X), b = 1, 2 . . . , B (1) 

For each frequency band . b, the Common Spatial Pattern (CSP) algorithm 
is applied to extract spatial filters that maximize variance differences between
motor imagery classes. Given the band-limited signal .X(b), CSP solves the fol-
lo wing optimization problem:

.W(b) = argmax
W

W Σ(b)
1 W

W Σ(b)
1 + Σ(b)

2 W
(2) 

where .Σ(b)
1 and .Σ(b)

2 are the covariance matrices of the two classes in band . b. 
The spatially filtered signals are then obtained as:

.Z(b) = (W(b)) X(b) (3) 

From each CSP-projected sub-band signal, we extract log-variance features with 
(K = 2) as follows:

.f
(b)
k = log var Z

(b)
k , k = 1, . . . , K (4) 

where .Z(b)
k is the output of the .k-th CSP component in the .b-th frequency band.

Finally, features from all sub-bands and CSP components are concatenated 
to form a high-dimensional spectro-spatial feature vector:

.f = f
(1)
1 , . . . , f

(1)
K , f

(2)
1 , . . . , f

(2)
K , . . . , f

(B)
1 , . . . , f

(B)
K ∈ R

B×K (5) 

This representation serves as the input for subsequen t nonlinear dimensionality
reduction.

3.2 Nonlinear Compression with an Autoencoder

To replace manual feature selection and capture nonlinear relationships among 
FBCSP features, we employ a deep autoencoder (AE) as a dimensionality reduc-
tion module. Let .f ∈ R

din denote the FBCSP feature vector of a trial, standard-
ized using z-score normalization (statistics computed on the training split only).
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The AE consists of an encoder .Eφ : Rdin → R
dz and a decoder .Dψ : Rdz → R

din , 
jointly trained to minimize the mean squared reconstruction error:

. LAE =
1
N

N

i=1

fi − Dψ(Eφ(fi))
2
2 .

Training. We optimize the AE with Adam (learning rate .10−3, weight deca y
.10−5) for at most 250 epochs, using early stopping with patience .= 10 on valida-
tion reconstruction loss; the best checkpoint is restored. Unless otherwise s tated,
we set the latent dimension to .dz = 8. After training, the encoder is frozen and 
its latent codes are used for probabilistic classification. The architecture and 
hyperparameters of the AE are provided in Table 1. 

Table 1. Autoencoder architecture ( fully connected).

Block Layer Hyper-parameters Output shape Activation 

I Input .din (feature dim) .(N, din) – 

II Dense1 .64 units .(N, 64) Linear 

BatchNorm1d – .(N, 64) – 

LeakyReLU .α = 0.2 .(N, 64) LeakyReLU 

III Dense2 .32 units .(N, 32) Linear 

BatchNorm1d – .(N, 32) – 

LeakyReLU .α = 0.2 .(N, 32) LeakyReLU 

IV Latent .dz units .(N, dz) Linear 

V Dense3 .32 units .(N, 32) Linear 

BatchNorm1d – .(N, 32) – 

LeakyReLU .α = 0.2 .(N, 32) LeakyReLU 

VI Dense4 .64 units .(N, 64) Linear 

BatchNorm1d – .(N, 64) – 

LeakyReLU .α = 0.2 .(N, 64) LeakyReLU 

VII Output .din units .(N, din) Linear 

3.3 Probabilistic Classification with G aussian Processes

Given AE laten ts .zi ∈ R
dz , we use a Gaussian Process Classifier (GPC) with

logistic link:

.f(z) ∼ GP 0, kθ(z, z ) , yi | fi ∼ Bernoulli σ(fi) , σ(t) = 1
1+e−t . (6) 

We adopt an RBF kernel .kθ(z, z ) = σ2
f exp z − z 2/(2 2) ,  whose  hyper-

parameters .θ = {σf } are learned by maximizing the Laplace-approximated 
marginal likelihood via L-BFGS-B. W ith the Laplace approximation, letting
.W = diag σ(f̂i) [1 − σ(f̂i)] at the posterior mode . ̂f , the posterior is approx i-
mated by

.q(f) ≈ N f̂ , Σ , Σ = (K−1 + W)−1. (7)
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Calibration Metrics. We report Expected Calibration Error (ECE) and M ax-
imum Calibration Error (MCE) with .M = 10 equal-width bins .{Bm}M

m=1.  Fo  r
bin .Bm of size .nm, 

. acc(Bm) =
1

nm
i∈Bm

1{ŷi = yi}, conf(Bm) =
1

nm
i∈Bm

p̂i,

. ECE =
M

m=1

nm

N
acc(Bm) − conf(Bm) , MCE = max

m
acc(Bm) − conf(Bm) .

ECE captures average miscalibration, MCE highligh ts the worst-bin deviation.

4 Experiments 

We extract multi-band FBCSP features and evaluate two selectors, SelectKBest 
(SKB) and Mutual Information-Based Individual Feature (MIBIF) [2]. Selected 
features are z-scored and fed to standard classifiers (KNN, SVM-RBF, Ran-
dom Forest, Naive Bayes, LDA, and GPC-RBF) under the same subject-specific 
splits. For context only, we also reference a literature-reported deep result (Cap-
sNet; Sensors 2019) [7] rather than re-training deep baselines. Comparative 
results are presented in Sect. 5. 

4.1 BCI Competition IV – Dataset 2b

We evaluated our method on BCI Competition IV – Dataset 2b, a benchmark 
MI-EEG corpus from Graz University of Technology [20]. Nine healthy volun-
teers each completed five sessions: two screening sessions without feedback and 
three feedback sessions with a real-time “smiley” reinforcement (see Fig. 2). EEG 
was recorded from electrodes C3, Cz, C4 at 250 Hz. Each session comprised left-
vs-right h and imagery trials. In screening sessions, the timeline was: 0 s fixation
.(+) → 3 s auditory cue .→ 1.25 s arrow cue .→ 4 s imagery .→ 1.5 s rest (total 9 s). 
In smiley-feedback sessions, the fixation was replaced by a neutral grey smiley, 
and during the imagery period, the smiley provided real-time visual feedback 
according to the subject’s performance. Sessions 1–2 contained 120 trials; 3–5 
contained 160 trials. The first three sessions of each subject we re used exclu-
sively for training, while the remaining two were reserved for evaluation. In our
experiments, we used the 4-second imagery segment from 3 s to 7 s.

4.2 HCMIU – Motor Imagery H and–Binary Dataset

To validate our method’s robustness on small-scale EEG datasets, we employed 
a hand–binary dataset collected by the Brain Health Lab at Vietnam National 
University – International University. The dataset comprises EEG recordings 
from 14 healthy undergraduates performing motor imagery (MI) tasks, captured
with a 32-channel Emotiv Flex headset at 128 Hz. Each trial commenced with a
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Fig. 2. Protocol in BCI Competition IV 2b: (a) Screening session with directional arrow 
cue and no feedbac k, (b) Smiley feedback session with real-time visual reinforcement.

2-second visual cue, followed by an auditory prompt instructing participants to 
imagine specific motor actions for 4 s without physical execution (see Fig. 3). Par-
ticipants were randomly divided into three groups: G1 viewed hand movement 
images; G2 observed cursor images; and G3 observed cursor images with real-
time Event-Related D esynchronization (ERD) feedback, enabling performance
adjustments. In total, the dataset comprised 1,140 samples (see Table 2), which 
were analyzed through subject-specific 5-fold cross-validation. In our experi-
ments, we used the 4-second imagery segment from 4 s to 8 s.

5 Results and Discussion 

Comparison with FBCSP Pipelines (Table 3). On BCI Competition IV-
2b, FA-GPNet achieves the highest ave rage accuracy across subjects (78.19%),

Fig. 3. Protocol in HCMIU – Motor Imagery Hand–Binary Dataset: Image-cue (G1), 
Arrow-cue (G2), and Arrow-cue-feedback (G3). All cues were displayed in Vietnamese.
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Table 2. The HCMIU MI-EEG dataset: Number of samples for each subject.

Subject F10 F11 F12 F14 F15 F16 F18 F20 F22 F24 F25 F26 F27 F29 Total 
Dataset 114 90 90 30 90 60 90 90 96 90 84 84 72 60 1140 

outperforming both FBCSP+SKB and FBCSP+MIBIF configurations. Subject-
wise breakdown in Table 3 shows that the gains are not driven by a single sub-
ject: FA-GPNet improves over traditional pipelines on several challenging sub-
jects (e.g., S2, S3, S5, S7), indicating that the method is robust to inter-subject 
variability. These results support the design c hoice of replacing manual feature
selection with a deep, nonlinear compression stage (autoencoder) and using a
probabilistic classifier (Gaussian Process) that provides calibrated predictions.

Table 3. Per-subject classification accuracy (%) on the BCI Competition IV-2b 
dataset. Bold denotes the best result per subject; the last row reports the average
across subjects.

Subject SelectKBest (SKB) MIBIF FA-GPNet 
KNN SVM RF NB LDA GP KNN SVM RF NB LDA GP 

1 64.10 66.20 67.20 66.20 67.20 65.90 61.30 64.40 65.90 64.10 65.60 65.60 71.88 
2 48.90 46.10 45.70 50.00 51.10 47.10 48.90 46.10 45.70 50.00 51.10 47.10 59.64 
3 50.60 57.20 55.00 55.90 55.00 55.60 51.90 56.20 55.30 57.20 54.10 50.90 57.50 
4 85.00 87.20 90.60 86.30 95.00 95.00 86.90 87.80 91.60 86.90 95.30 94.40 93.44 
5 85.60 86.30 85.90 86.90 88.70 87.50 88.10 86.90 86.90 89.40 89.40 89.40 89.38 
6 74.70 78.70 77.20 80.00 78.70 79.10 72.20 77.80 75.90 78.70 77.80 78.40 83.43 
7 70.30 74.40 77.50 73.10 75.30 75.60 67.50 72.50 73.10 73.80 75.00 75.90 77.81 
8 74.40 84.70 81.90 79.70 86.60 86.60 67.80 78.70 74.10 72.80 79.40 72.80 85.31 
9 70.30 80.90 78.10 77.20 79.40 80.00 69.10 80.90 77.80 80.00 81.20 80.60 85.31 
Average 69.32 73.52 73.23 72.81 75.22 74.71 68.19 72.37 71.81 72.54 74.22 72.89 78.19
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Table 4. Per-subject accuracy (%) on BCI Competition IV-2b. Figures for ShallowNet, 
DeepNet, EEGNet, CNN, and CapsNet are quoted verbatim from [7] (their original 
preprocessing/evaluation; no re-training). They are provided for context only and are 
not directly comparable to our F A-GPNet results, which are obtained under a single
fixed pipeline.

Subject ShallowNet DeepNet EEGNet CNN CapsNet FA-GPNet(Proposed) 
1 71.56 67.25 67.18 69.78 78.75 71.88 
2 53.57 56.10 58.21 54.75 55.71 59.64 

3 53.12 54.87 55.62 52.88 55.00 57.50 

4 95.93 94.52 95.31 95.31 95.93 93.44 
5 85.00 84.59 86.87 85.91 83.12 89.38 

6 76.87 74.46 77.50 78.03 83.43 83.43 

7 76.56 77.03 76.87 69.75 75.62 77.81 

8 85.93 87.75 89.68 87.56 91.25 85.31 
9 82.18 79.25 80.00 80.91 87.18 85.31 
Average 75.63 75.10 76.36 74.99 78.44 78.19 

Comparison with Compact Deep Networks (Table 4). Against prior com-
pact CNN baselines reported for context—ShallowNet, DeepNet, EEGNet, stan-
dard CNN, and CapsNet—FA-GPNet is competitiv e with the strongest model:
its average accuracy (78.19%) is within .0.25 points of CapsNet (78.44%) while 
surpassing the other deep baselines in Table 4. Notably, FA-GPNet attains 
this performance without end-to-end deep classification and while preserving 
the interpretability of handcrafted spectral–spatial features and the calibrated 
uncertainty of a Bayesian classifier. This suggests that combining classical pri-
ors (FBCSP) with data-driven compression and Bayesian inference can match
the accuracy of compact deep models under within-subject protocols, often with
more transparent decision factors.

Generalization to HCMIU MI-EEG Dataset (Table 5). On the small, 
high-variability HCMIU hand–binary MI dataset, FA-GPNet achieves the best 
average accuracy (57.15%), outperforming all FBCSP+feature-selection base-
lines in Table 5. The consistent subject-wise gains under scarce labeled data sup-
port the claim that the hybrid handcrafted–deep–Bayesian design is well-suited 
to low-data regimes, where purely supervised deep classifiers tend to overfit or
require heavy regularization.
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Table 5. The HCMIU hand–binary MI dataset: per-subject accuracy (%) under within-
subject 5-fold CV. We compare FBCSP baselines with feature selection (SKB, MIBIF) 
across classical classifiers against our FA-GPNet. The Average row macro-averages
across subjects; best per subject is bold.

Subject SelectKBest (SKB) MIBIF FA-GPNet 
KNN SVM RF NB LDA GP KNN SVM RF NB LDA GP 

F10 57.87 57.04 57.04 57.83 59.60 59.60 54.31 55.30 55.18 50.00 56.09 56.96 64.00 
F11 55.56 54.44 60.00 47.78 58.89 53.33 50.00 52.22 55.56 50.00 52.22 51.11 63.33 
F12 50.00 45.56 45.56 47.78 41.11 40.00 46.67 40.00 45.56 42.22 42.22 45.56 53.33 
F14 36.67 36.67 36.67 33.33 36.67 36.67 43.33 36.67 36.67 36.67 36.67 33.33 53.33 
F15 52.22 55.56 56.67 54.44 51.11 48.89 54.44 52.22 53.33 51.11 53.33 53.33 62.22 
F16 38.33 41.67 45.00 41.67 33.33 45.00 43.33 43.33 45.00 41.67 43.33 43.33 51.67 
F18 54.44 53.33 53.33 53.33 54.44 54.44 52.22 51.11 52.22 51.11 52.22 53.33 61.11 
F20 53.33 46.67 47.78 46.67 54.44 54.44 54.44 52.22 51.11 51.11 51.11 54.44 60.00 
F22 41.79 44.63 42.22 42.22 42.22 41.76 42.00 42.74 41.67 42.22 41.19 44.63 50.00 
F24 51.11 50.00 52.22 51.11 44.44 43.33 47.78 50.00 48.89 48.89 46.67 51.11 54.44 
F25 54.44 53.33 53.33 51.11 51.11 54.44 52.22 53.33 51.11 52.22 53.33 52.22 55.96 
F26 53.33 50.00 50.00 53.33 50.00 50.00 53.33 52.22 52.22 51.11 52.22 51.11 57.06 
F27 51.25 51.11 50.00 53.33 51.11 53.33 50.00 52.22 52.22 52.22 53.33 52.22 56.95 
F29 51.11 46.67 51.11 52.22 48.89 48.89 54.44 54.44 54.44 51.11 51.11 54.44 56.67 
Average 50.10 49.04 50.06 49.01 48.38 48.86 49.89 49.14 49.65 47.97 48.93 49.79 57.15 

Calibration and Uncertainty (Table 6). We report Expected Calibration 
Error (ECE) and Maximum Calibration Error (MCE) p er subject using equal-
width binning with .M = 10 bins. Across the nine IV-2b subjects, the mean
ECE is .≈ 0.080 and the mean MCE is .≈ 0.232; five subjects have ECE .≤ 0.10, 
and two subjects fall below .0.05. Subject 3 exhibits perfect calibration under 
this metric set (ECE/MCE .= 0.000), whereas Subject 4 shows the largest MCE
(.≈ 0.373), indicating room for improvement on difficult cases.

Table 6. Per-subject calibration on BCI Competition IV-2b: Expected Calibration 
Error (ECE) and M aximum Calibration Error (MCE) using equal-width binning with
.M = 10 on each subject’s test split. Low er is better.

Subject 1 2 3 4 5 6 7 8 9 
ECE 0.1641 0.0352 0.0000 0.0589 0.1023 0.1067 0.0681 0.0803 0.1033 
MCE 0.3151 0.1797 0.0000 0.3734 0.3047 0.3681 0.1539 0.1549 0.2401
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6 Conclusion 

We presented FA-GPNet, a novel hybrid framework that integrates FBCSP, 
Autoencoder, and Gaussian Process for motor imagery EEG decoding. Experi-
ments on the BCI Competition IV-2b and HCMIU - Hand-Binary Motor Imagery 
dataset show consistent improvements over classical pipelines and competitive 
performance with compact deep networks. These results highlight the value
of combining handcrafted priors, deep representations, and Bayesian inference,
opening avenues for more reliable and interpretable BCI systems.

Future Work. We will extend the model to multi-class MI evaluation–e.g., the 
4-class BCI Competition IV-2a–and aim to improve performance through data 
augmentation. 
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