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BeCaked: An Explainable Artificial 
Intelligence Model for COVID‑19  
Forecasting
Duc Q. Nguyen1,3, Nghia Q. Vo2,3, Thinh T. Nguyen1,3, Khuong Nguyen‑An1,3, 
Quang H. Nguyen1,3, Dang N. Tran4 & Tho T. Quan1,3*

From the end of 2019, one of the most serious and largest spread pandemics occurred in Wuhan 
(China) named Coronavirus (COVID‑19). As reported by the World Health Organization, there are 
currently more than 100 million infectious cases with an average mortality rate of about five percent 
all over the world. To avoid serious consequences on people’s lives and the economy, policies and 
actions need to be suitably made in time. To do that, the authorities need to know the future trend 
in the development process of this pandemic. This is the reason why forecasting models play an 
important role in controlling the pandemic situation. However, the behavior of this pandemic is 
extremely complicated and difficult to be analyzed, so that an effective model is not only considered 
on accurate forecasting results but also the explainable capability for human experts to take action 
pro‑actively. With the recent advancement of Artificial Intelligence (AI) techniques, the emerging 
Deep Learning (DL) models have been proving highly effective when forecasting this pandemic future 
from the huge historical data. However, the main weakness of DL models is lacking the explanation 
capabilities. To overcome this limitation, we introduce a novel combination of the Susceptible-
Infectious-Recovered-Deceased (SIRD) compartmental model and Variational Autoencoder (VAE) 
neural network known as BeCaked. With pandemic data provided by the Johns Hopkins University 
Center for Systems Science and Engineering, our model achieves 0.98 R2 and 0.012 MAPE at world 
level with 31‑step forecast and up to 0.99 R2 and 0.0026 MAPE at country level with 15‑step forecast 
on predicting daily infectious cases. Not only enjoying high accuracy, but BeCaked also offers useful 
justifications for its results based on the parameters of the SIRD model. Therefore, BeCaked can be 
used as a reference for authorities or medical experts to make on time right decisions.

Deep Learning (DL)1, a subarea of machine learning, has been applied in many tasks such as speech recognition, 
object detection, natural language processing, etc. with noticeably high accuracy. Due to its powerful computa-
tion capability, DL models are proven highly effective once handling huge datasets whose volumes easily make 
human beings overwhelming.

Thus, as the pandemic of Coronavirus (COVID-19)2,3 has been spreading on a worldwide scale and posing 
a serious threat to daily life of humanity, DL is considered as an effective machine learning approach to analyze 
the massive dataset of patient records of infected and tested cases, which can be collected on the daily basis and 
presented as a sequence of historical data. Due to its data-driven learning mechanism, DL-based approaches 
usually introduce highly accurate rates when predicting the increase of infectious epidemics from the past 
historical data. In particular, a special kind of Deep Learning known as Recurrent Neural Network (RNN)4 and 
its advanced version, Long Short Term Memory (LSTM)5, enjoy visibly better performance once compared to 
traditional methods such as ARIMA, SEIR, etc.6–8 and deliver significant results for some countries, for instance, 
 Canada9 and European  countries10. It is because the operational mechanism of this network kind is effectively 
suitable to process sequence data.

Nevertheless, the contribution of DL-based methods is limited to the fact that their results are often given in 
a black-box manner, making them unexplainable in terms of the internal properties of the pandemic. Thus, they 
hardly provide experts with explicit declarative knowledge, based on which a corresponding action plan can be 
prepared. For instance, let us consider some motivating situations given in Fig. 1. Due to a very large number 
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of patient records rapidly collected and processed, a well-trained Deep Learning model can predict a certain 
increase of infectious cases in the next few days. However, this model generally could not explain for itself the 
reason behind such a trend. Hence, medical experts suffer difficulty from retrieving the root cause of the situation 
and proposing proper actions to improve the status. In the other words, the problem which Deep Learning as 
well as many machine learning models are facing is that predicted output are not accompanied by a justification 
or anything that substantiates insights on what the models have learned. To solve this problem, a new generation 
of machine learning models known as Explainable Artificial Intelligence (Explainable AI)11 has emerged and is 
expected to overcome the weaknesses of the black-box machine learning models. This generation not only makes 
machine learning models more explainable, while still maintaining a high level of learning performance, but also 
enables us to trust, understand and productively manage the emerging development of AI systems.

In terms of an epidemic, there have been many studies on modeling and forecasting its future. Technically, 
we can divide those models into two groups including mathematical models and machine learning models12. Most 
mathematical models are based on a well-known compartmental model introduced by Kermack and McKend-
rick in  192713. However, the parameters of those models are biasedly determined; thus, they are subjective and 
unobvious. In this paper, a model called Susceptible–Infectious–Recovered–Deceased (SIRD)14,15 which is one of 
the most commonly used mathematical models in the past to calculate epidemic outbreaks, is considered. It is 
illustrated in Fig. 1, when successfully observing the parameters of the SIRD model from the recorded cases, 
experts can better understand the situation and suggest suitable actions. For example, upon witnessing that the 
infectious rate is significantly reduced while the deceased rate is relatively high, one can conclude that even 
though the reported number of infectious cases is still seriously high, the threat of infection in communities is 
now under control and suggest to lift the lock-down restriction in some certain regions.

Figure 1.  Illustration of the usage of deep learning and explainable model for COVID-19 forecast.
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Even though mathematical models can give useful hints for human experts from their internal parameters, 
to estimate such parameters from vast sources of real historical data is by no means a trivial task, which can be 
potentially handled by DL models. Hence, the combination of Deep Learning models and the mathematical 
SIRD model interestingly promises an Explainable AI solution to deal with the terrifying COVID-19 pandemic. 
In this paper, we propose a semi-supervised model known as BeCaked (Be Careful and Keep Distance) to realize 
this vision. Our work is inspired by the Variational-LSTM Autoencoder  model16 where the neural architecture of 
Autoencoder (AE)17 is combined with the previously discussed LSTM to encode the data produced from LSTM 
into a higher informative representation for better processing. However, the results from this model are still 
unexplainable. To address this, we modify the Autoencoder architecture to enforce it to encode the processed 
sequence data produced by the LSTM layers into SIRD model parameters. Thus, the forecasting results of this 
end-to-end trainable architecture can be comprehensible for human experts in terms of those SIRD parameters, 
making our AI approach explainable. Moreover, the model makes use of the advantages of semi-supervised learn-
ing algorithms (the Autoencoder network specific), which do not need labeled data accompanied by sophisticated 
loss functions.

The rest of this paper is organized as follows. Section “Related works” highlights some related works including 
classical mathematical and modern machine learning models. In “Preliminaries”, we recall background knowl-
edge on the Deep Learning models of LSTM and Variational Autoencoder (VAE). The famous SIRD model and its 
capability of explainability are presented in “The SIRD model and its explainability”. Next, the technical details of 
the BeCaked model are presented in “The BeCaked model”. In “Performance evaluation”, insightful experiments 
are conducted with real COVID-19 data. Those experiments also show that our explainable BeCaked not only 
enjoys high accuracy of prediction, as compared to some state-of-the-art (SOTA) models, but can also analyze 
what is going on with the pandemic, illustrated by real data from some major countries in the world. We discuss 
our model and its achievements in “Discussion”. Finally, “Conclusion” concludes our study and gives some future 
possible improvements. We also attach an appendix about the name “BeCaked” (“Appendix 1”) and illustrations 
of web-based system which we have deployed our BeCaked model on (“Appendix 2”) for interested readers.

Related works
Since the COVID-19 pandemic began to spread, there has been a lot of research to solve the problem of sequenc-
ing the virus gene, finding a cure, a vaccine, predicting the effect and extent of transmission spread of the pan-
demic, etc. To be honest, we cannot deny the benefits of pandemic forecasting models. Thanks to them, countries 
can detect infected people early and slow down the spread of this pandemic. Since then, medical researchers 
have more time to research and find vaccines and medicines. In this section, we analyze the advantages and dis-
advantages of the latest mathematical and Deep Learning models to predict this pandemic and compare them 
with the model we have proposed.

Mathematical models. Most of the mathematical models currently used for epidemic prediction are 
developed based on the Susceptible-Infectious-Recovered (SIR) model of Kermack and  McKendrick13. The com-
mon point of these mathematical prediction models is the reliability and the predictable results. By converting 
factors that influence the epidemic into differential equations and integrating them with existing equations, 
researchers have created more variations with more realistic predictability than the original one and suitable for 
many types of epidemic. Some highlighted recent research can be listed as follows:  SEIRD7,  SIRD15,  SEIPEHRF18, 
etc. The main weakness of these mathematical models is that they require transition rates between states and 
those numbers are not easy to estimate accurately. Because the experts estimating those rates are still human, 
so their predictions still contain “humanity” and sometimes do not have enough “sensitivity”. Therefore, the 
performance of those models is often not as high as they were expected.

Some other models that can be used to forecast this pandemic are regression-based models. These models 
depend on both their hyperparameters and the historical data. As a consequence, their performances are almost 
the same as the SIR-based model. Some well-known models can be listed such as Geographically Weighted Regres-
sion (GWR)19,  ARIMA10 and its extensions.

Machine learning models. Towards machine learning models for forecasting, the very first thing to be 
mentioned is that they achieve high performance when being applied in this COVID-19 pandemic. There are so 
many models, varying from simple to complex in their architecture. Recent studies notice that they can assemble 
some external factors of the pandemic to make the prediction more accurate. We can consider some outstanding 
ones such as LSTM-based  models7,10, Variational-LSTM  Autoencoder16,  NARNN10, etc.

Apart from forecasting from time series data, other multimedia data, e.g. X-ray images, are also incorporated 
into the latest Deep Learning models, mostly for diagnosis purposes. In recent years, various  works20–22 have been 
reported on hybrid approaches that fuse features extracted from X-ray images into Deep Learning models for 
medical diagnosis. Besides, there is also a benchmarking work of Mohammed et al.23 which is made for selecting 
the best model using information theory.

In general, diagnosis models using multimodal approaches have achieved some remarkable results, and we can 
see that some of their results have already been applied to real medical practices. However, in order to effectively 
respond to the pandemic, forecasting models are still highly demanded. As discussed, Deep Learning models have 
demonstrated high accuracy in terms of performance. However, as a trade-off, they are extremely complex and 
need more detailed input data (such as the contact information, the number of testing or quarantines, etc.), which 
will result in an unsuitable situation when using those SOTA models in developing countries where modern 
technology is not  reachable24. Also, besides their good performance, the only things we get from those models 
are the number of cases. They can not give us insights into how they predict those values. Therefore, although 
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their forecasting performances are usually high, they could not convince epidemiologists about their reliability. 
Because the pandemic situation changes every hour, every day, those models can predict well at this moment, 
but no guarantee that they will do the same for further moments. Moreover, experts need more information 
than the only number of cases to control the pandemic, so we can easily consider that almost machine learning 
models could not satisfy them.

Our proposed BeCaked model also takes advantage of the LSTM layer when using it to extract “sequence” 
features of historical time-series data. As a result, our model can find the relationship between the difference in 
the number of considered cases in the previous days and the parameters ( β , γ , µ ) of the SIRD model. This is the 
same as for the above LSTM-based models that successfully find the relationship between the number of cases in 
the past and the future. While those models can not elucidate clearly their forecasting results, our BeCaked one 
represents the forecasting by explanations based on the connection of ( β , γ , µ ) and cases. Therefore, our model 
has not only high precision but also denotes the reason why its predictions are like that.

Preliminaries
LSTM neural network. Modeling time-series data is likely impossible when using the standard Multilayer 
Perceptron (MLP)4 due to a lack of correlations between them. Therefore, an Recurrent Neural Network (RNN) 
was developed in the 1986 by  Rumelhart4 and improved by  Werbos25 and  Elman26 for addressing that type of 
problem. In general, the construction of an RNN is similar to Feed-forward Neural Network (FNN)27 with the 
distinction that a presence of connections between hidden layers is spanned through adjacent time steps. By 
these connections, an RNN can retain the properties of information because of the share-weighted characteris-
tic, providing an ability to learn temporal correlations with high accuracy even when the locations of featured 
events are likely far away from each other. Figure 2 presents the basic architecture of an RNN, which has physi-
cally one layer. At the time t, this network will produce output yt from the input xt . However, the output of this 
network at the previous iteration will also be used as a part of the input of the next step, or recurrent input, 
together with new actual input. Similar to a typical MLP, RNN uses some layers of perceptron to learn suitable 
weights in the backpropagation manner when processing input, output and recurrent input, denoted as Wh , Wy 
and Whh ,  respectively4. Thus, when handling a sequence of data xt , an RNN can be logically unfolded as a recur-
rent multilayer network, as depicted in Fig. 3. The whole process from getting input to producing output in RNN 
is expressed in Eq. (1a, 1b). 

In (1a, 1b), ht is the hidden state of RNN at the time t; Wh , Whh and Wy are learnable weight matrixes for 
input-to-hidden, hidden-to-hidden, and hidden-to-output connections, respectively; bh and by are bias coef-
ficients; δ and ζ are non-linear activation functions which can be chosen based on a specific problem.

Even though the RNN is theoretically a simple and powerful model, it is difficult to learn properly due to 
a limit in learning long-term dependencies, caused by two well-known issues in training a model which are 
vanishing and exploding gradient28. The vanishing gradient will become worse when a sigmoid4 activation func-
tion is used, whereas a Rectified Linear Unit (ReLU) can easily lead to an exploding gradient. Fortunately, a 

(1a)ht = δ(Whxt +Whhht−1 + bh)

(1b)yt = ζ(Wyht + by)

Figure 2.  The physical architecture of an RNN.
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formal thorough mathematical explanation of the vanishing and exploding gradient problems was represented 
by  Bengio29, analyzing conditions under which these problems may appear.

To deal with the long-term dependency problem, a developed version of RNN was introduced by Hochreiter 
and Schmidhuber in 1997, called Long Short Term Memory (LSTM)5. LSTM has overcome the limitations of 
RNN and delivers a higher performance by using a hidden layer as a memory cell instead of a recurrent cell (see 
Fig. 4). In the standard LSTM model, processing information is more complicated when modules containing 
computational blocks are repeated over many timesteps to selectively interact with each other to determine which 
information will be added or removed. This process is controlled by three gates namely input gate, output gate, 
and forget gate. Controlling the flow of information inside an LSTM model is calculated using Eqs. (2a)–(2f). 

(2a)it = σ(W ixt +Whiht−1 + bi)

(2b)ft = σ(W f xt +Whf ht−1 + bf )

(2c)ot = σ(Woxt +Whoht−1 + bo)

(2d)C̃t = tanh(WCxt +WhCht−1 + bC)

(2e)Ct = ft ⊗ Ct−1 + it ⊗ C̃t

Figure 3.  An unfolded RNN.

Figure 4.  The structure of an LSTM cell.
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In Eqs. (2a)–(2f), it , ft , ot , Ct , ht denote input gate, forget gate, output gate, internal state, and hidden layer at 
the time t respectively. Here, W i , W f  , Wo , WC , and Whi , Whf  , Who , WhC and bi , bf  , bo , bC represent the weight 
matrixes and biases of three gates and a memory cell, in the order given. Concretely, the activation function, 
sigmoid ( σ ), helps an LSTM model control the flow of information because the range of this activation func-
tion varies from zero to one so if the value is zero, all of the information is cut off, otherwise, the entire flow of 
information passes through. Similarly, the output gate allows information to be revealed appropriately due to 
the sigmoid activation function then the weights are updated by the element-wise multiplication of output gate 
and internal state activated by non-linearity tanh function. With the pivotal component which is the memory 
cell accommodating three gates: input, forget, and output gate, LSTM has overcome limitations of RNN, enhanc-
ing the ability to remember values over an arbitrary time interval by regulating the flow of information inside 
the memory cell. Therefore, LSTM possesses a capacity to work tremendously well on learning features from 
sequential data such as documents, connected handwriting, speech processing, or anomaly detection, etc.30.

Autoencoder and variational autoencoder. Autoencoder (AE)17 is a type of neural network designed 
to attempt to copy its input to its output, concurrently producing an encoding representation of the input. The 
network can be described as a construction of two parts, and the internal process can be observed in Fig. 5.

• Encoder: this part of the neural network will compress the input into a latent-space representation which can 
be represented as an encoding function A: f : X → H

• Decoder: this part, in contrast to the encoder, try to reconstruct the input from the latent-space representa-
tion which can be described as a reconstruction function B: g : H → R where the distance between R and 
X needs to be minimized.

(2f)ht = ot ⊗ tanh(Ct−1)

Figure 5.  The concept of autoencoder.
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Therefore, Autoencoder can be described as an unsupervised learning process that the bottleneck hidden 
layer will force the network to learn from a latent space representation, resulted from automatically encoding 
the input data, whereas, the reconstruction loss will make the latent representation contain as much information 
of the input as possible. This learning method enables machines to capture the most meaningful features which 
accurately represent the input and ignore others that do not really describe the input data.

Perhaps the most popular usage of Autoencoder is encoding. As its name implies, after being properly trained, 
the encoder can be used to encode any input to the corresponding latent-space representation. Autoencoder has 
been deployed in various fields of AI. In the area of Natural Language Processing (NLP), the Autoencoder network 
is widely used as a basic method for word embedding or machine translation tasks. Also, it has proved its power 
to solve some problems in Computer Vision (CV) such as image  compressing31, image  denoising32, etc. Recently, 
the Autoencoder network has been developed with many improvements in order to fit more problem types. With 
its flexible transformation ability, the Autoencoder can be changed its training method for other problems (such 
as Variational Autoencoder (VAE)33 for Recommender  system19), or its architecture such as adding or removing 
its hidden layers with more specific ones like Convolutional Neural Network (CNN)34, LSTM or itself (such as 
Autoencoder in Autoencoder for data  representation35).

In the standard Autoencoder network, the encoder and the decoder are usually implemented as Fully-con-
nected (FC) or CNN. Therefore, the input in Autoencoder is encoded into latent deterministic variables. Whereas, 
its attention to VAE generates a probabilistic distribution over latent random variables by using Bayes’s rule to 
approximate the probability p(code|input) with the presence of the mean µ and standard deviation σ . Reversely, 
the decoder, inversely approximating the probability p(output|code), will be a scaffolding for the encoder to 
learn the rich representations of  data36. In the original VAE model, the encoder is used to learn the parameters 
of data distribution from the input space. This architecture can be adapted to learn other kinds of distribution 
parameters such as the one used in aspect-based opinion  summary37, which extends the VAE model to learn 
the parameters of Dirichlet distributions in the problem of topic modeling. In this work, we combine VAE with 
LSTM to learn the parameters of the SIRD model which will be discussed in the next section.

The SIRD model and its explainability
The Susceptible-Infectious-Recovered-Deceased (SIRD) model is one of the most commonly used in the past to 
describe epidemic  outbreaks38–40. The model demonstrates four states known as Susceptible, Infectious, Recovered 
and Deceased of people in a population isolated under the spread of an infectious epidemic. In most infectious 
epidemic, the simple SIRD model assumes that infected people will be immune from that epidemic if they have 
 recovered41. Figure 6 presents the transitions between states in the SIRD model. In detail, people in Susceptible 
state move to Infectious state if they are infected by another one. When a person is in Infectious state, he can be 
cured successfully and then moves to Recovered state or unluckily moves to Deceased state. Due to the assump-
tion about the immune mechanism, people in Recovered state cannot be infected again, so that they cannot move 
back to Susceptible state.

More precisely, suppose that t0 is the initial time that epidemic was recognized, given a specific day t where 
t > t0 > 0 , we denote the functions S(t), I(t), R(t), D(t) as the numbers of susceptible, infectious, recovered and 
deceased cases at day t, respectively. Moreover, we assume that there are three rate parameters β , γ and µ of the 
model as follows.

• β : the rate of transmission, i.e. the average number of contacts of the persons in the community per day (from 
the first day to the estimated last day of the pandemic).

• γ : the rate of recovery, i.e. the average number of recovered cases in the community per day.
• µ : the rate of mortality from the epidemic, i.e. the average number of deceased cases suffering from the infec-

tious cases per day.

Figure 6.  The concept of the SIRD model.
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Then, given a population of N individuals, the SIRD model consists of four ordinary differential equations 
describing the relationships between the above functions and factors, given in Eqs. (3a)–(3d). 

The three parameters β , γ and µ , therefore, are very essential to the model. At the early stage, β reflects how 
the infection would increase if individuals were behaving as usual before being informed of medical conditions 
or any information related to the  infection38. Moreover, β varies depending on how strong the social distancing 
and hygienic practices that different locations adopt, either because of policy or simply because of voluntary 
changes in individual  behavior38–41. Whereas, γ provides insights into how many people recover from the epi-
demic in a period of time. Therefore, the average number of days a person is infected is 1

γ
 and we can statistically 

approximate γ based on the average cure time of one person. Finally, µ represents the average mortality rate in 
a period of  time38. Both γ and µ perform the average medical capacity of the region considered.

A unique solution S(t), I(t), R(t), D(t) for the SIRD model, respect to a certain ( β , γ , µ ), infectious, recovered 
and deceased cases at the time t38–40. According to the meaning of ( β , γ , µ ), it is hard to accurately estimate 
 them42. In other words, if we can estimate precisely the value of ( β , γ , µ ) from the historical data, we can forecast 
the trend of the pandemic more exactly. Moreover, those parameters can give us more insightful information 
about the internal status of the pandemic. For instance, if the number of deceased cases D(t) still tends to increase 
in the next days, alongside the high value of µ while the value of β becomes relatively small, one can conclude 
that the reason for high mortality rate is due to the unbearably serious health status of the infected people. 
Meanwhile, the transmission in the community now is well-controlled, which allows the authorities to endorse 
suitable policy (such as lifting the lock-down restriction on the community, if currently applied). Thus, the SIRD 
model is regarded as an explainable model, which is very helpful for human experts to deal with real situations.

Nonetheless, having an exact ( β , γ , µ ) is not trivial since it depends on many factors such as locations, social 
policies, region economy, medical capacity, etc. Furthermore, according to the epidemiologists, the parameters 
can only be approximated by the actual circumference at the location that we consider, since they do not remain 
unchanged in time.

Thus, when historical data become extremely huge like the real COVID-19 data of the world, it is virtually 
impossible for human experts to evaluate the value of ( β , γ , µ ) and especially their changes of values when sub-
stantial new impacts occur with the recent data. This urges us to consider using Deep Learning approaches to 
automatically learn and adjust the values of ( β , γ , µ ) from real streaming historical data, resulting in an Explain-
able AI model as subsequently discussed.

The BeCaked model
As mentioned before, the SIRD model can bestow a reasonable explanation regarding internal factors of a 
pandemic. However, it is very hard to determine the suitable values of the crucial parameters ( β , γ , µ ) of this 
model from extremely huge sources of historical data. Thus, we enhance the SIRD model by combining it with a 
Deep Learning architecture to automatically learn the suitable values of those parameters. As a result, we obtain 
a hybrid model, known as BeCaked, as presented in Fig. 7. The general ideas of employing Deep Learning tech-
niques in BeCaked are as follows.

• We firstly use LSTM to make predictions of future values by extracting significant features from the input of 
historical sequential data.

• We combine LSTM with VAE to encode the predicted output as the desired parameters of ( β , γ , µ ) and use the 
backpropagation capability of the end-to-end neural network to train the suitable values of those parameters 
from the input data. We also take advantage of the semi-supervised learning mechanism of VAE to auto-label 
the training data, as discussed later.

Particularly, in order to deal with the huge volumes of data, our main goal is to also reduce computation costs, 
simplify the loss function and explain the forecasting results. We carry out this goal in our proposed model 
architecture shown in Fig. 7. The detailed descriptions of BeCaked are discussed as follows.

Input data. Input data of the BeCaked model is a n× 4 matrix, where n indicates the last recent n days to be 
studied, assumed from 1st to nth day. The ith row of this matrix is a 4-dimension vector of (S(i), I(i), R(i), D(i)) 
of the corresponding ith day, whose meanings had been already explained previously.

(3a)
dS

dt
= −

βSI

N

(3b)
dI

dt
=

βSI

N
− γ I − µI

(3c)
dR

dt
= γ I

(3d)
dD

dt
=µI
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Figure 7.  The architecture of BeCaked model.
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Feature extraction for LSTM layers. From the raw information given from the historical input data and 
the population N, we then produce feature vectors Vi = (�Si ,�Ii ,�Ri ,�Di) , where �Si , �Ii , �Ri , and �Di can 
be observed in Eqs. (4a)–(4d). 

Finally, the sequence of feature vector {Vi} will be used as the input for the LSTM layers. In BeCaked, we use 
two stacked layers of LSTM to increase the abstraction capability from the extracted features.

Parameter encoding. The output of LSTM layers are then flattened as a 1-dimension vector, from which 
we encode into ( β , γ , µ ) parameters. The encoding process is carried out by the typical MLP technique, includ-
ing two FC layers enhanced with drop-out techniques and ReLU activation functions employed.

Thus, the BeCaked model can be regarded as a variation of the VAE model whose encoder consists of LSTM 
layers and FC layers previously described. The output of this encoder is then the parameters of ( β , γ , µ ), trainable 
by the model decoder as subsequently discussed.

Decoding process. From the encoded parameters of ( β , γ , µ ), the decoder will attempt to produce the 
desired output, which is also a n× 4 matrix similar to the input matrix. However, the output matrix captures 
the information from 2nd to (n+ 1) th day from the historical data. Thus, the labeling process for our encoder-
decoder mechanism can be done automatically, like all other VAE systems.

In order to decode the output matrix from the three parameters ( β , γ , µ ) learned with the n-day input data, 
the decoder approximates the SIRD model with the Euler  method43 because it is the easiest but most efficient 
way for approximating differential equations. We present the equations for approximating the SIRD model using 
the Euler method with step h = 1 in Eqs. (5a)–(5d). The reason why we choose Euler instead of Runge-Kutta44 or 
other methods is that it is the most suitable solving method for the data we have and step h = 1 is corresponding 
to a day in the data.

In Eqs. (5a)–(5d), S(i + 1) , I(i + 1) , R(i + 1) , D(i + 1) represent the number of susceptible, infectious, recov-
ered, and deceased cases at the (i + 1) th day which is right after the ith day, respectively.

In order to simplify the model, we normalize all data by dividing them for the population N. Consider we 
have normalized functions as in Eqs. (6a)–(6d). 
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Then Eqs. (5a)–(5d) can be written as Eqs. (7a)–(7d). 

Training process. In the training process, after the input data goes through all layers of our model, we cal-
culate the Mean Squared Error (MSE)45 loss function (Eq. (8)) between the output of BeCaked and the real data. 
The reason that we choose MSE is that it is simple and reflects the true error rate between the real data and the 
forecasting results, which is better for optimization purpose, compared to Root Mean Squared Error (RMSE) or 
other loss functions. Then we use Adam optimizer36 to update our model weights because it is the most suitable 
for noisy data. Let Yi and Ŷi be the ith vectors from actual data and the predicted values of BeCaked, w.r.t the 
n× 4 output matrix discussed in the decoding process, the MSE of an epoch in the training process is evaluated 
as (8).

Since BeCaked is an end-to-end VAE neural network as previously described, the loss function given in Eq. (8) 
can be used to update the weights of the whole system by the typical backpropagation manner (note that the 
decoder does not use any trainable weights and will not be updated during the training process). When the loss 
values become stable, the training process is converged and BeCaked is now able to predict ( β , γ , µ ) from any 
given sources of real input data.

Explainability of BeCaked. As previously described, the basic operational mechanism of BeCaked is tak-
ing ( β , γ , µ ) and data in the previous days to calculate the number of susceptible, infectious, recovered, and 
deceased cases in the next days. The most important thing that helps this model be successful is choosing the 
correct features of the input data so that the model can learn how to estimate ( β , γ , µ ) in the best way. In other 
words, BeCaked can serve not only as a regression system with the predicted values for the future, but also as a 
VAE generating the parameters of ( β , γ , µ ) with an explanation of the regressed value at the same time.

Also, the key idea which makes our model explainable is the way we infer the value of ( β , γ , µ ). On the 
one hand, our decoder ensures that the inferred values of ( β , γ , µ ) are mathematically correct to give accurate 
predictions on the training data. On the other hand, BeCaked manipulates the encoding process by taking into 
account the relationship between the difference in the number of considered cases in the previous days and the 
( β , γ , µ ) of the following days. This is a varied flow  correlation39–41, so if the more quickly the difference in the 
number of cases in the previous day increases, the higher the corresponding parameter is. For example, if we have 
recovered cases in three consecutive days as respective (5, 10, 20) the recovery rate will be considered increasing. 
Meanwhile, if the recovered cases are (5, 10, 12), the recovery case can be regarded as decreasing even though 
the number of recovered people still keeps increasing daily.

Performance evaluation
Data preparation and pre‑processing. In this evaluation process, we used the dataset provided by the 
Johns Hopkins University Center for System Science and Engineering (JHU CSSE)46,47. This dataset is collected 
from January 2020 until now from various sources such as the World Health Organization (WHO), European 
Centre for Disease Prevention and Control (ECDC), United States Centre for Disease Prevention and Control (US 
CDC), etc.46,47. In detail, this dataset contains the daily number of total infectious (including recovered and 
deceased cases), recovered, and deceased cases in all countries around the world.

In our experiment, we used the data from January 2020 to the end of June 2020 as training data and the 
July 2020 data for the testing period. As presented in “The BeCaked model”, we need the input containing four 
values in each day: susceptible, infectious, recovered, and deceased, but with the above dataset, we only have 
total infectious, recovered, and deceased cases. Therefore, we need to have a total population of the world and 
recalculate all the required input. The data about world population is provided by  Worldometers48. Equations 
(9a)–(9d) show how to calculate the input for BeCaked model from the dataset. 

(7a)S(i + 1) = S(i)− βS(i)I(i)

(7b)I(i + 1) = I(i)+ βS(i)I(i)− γ I(i)− µI(i)

(7c)R(i + 1) =R(i)+ γ I(i)

(7d)D(i + 1) =D(i)+ µI(i)

(8)MSE =
1

n

n∑

i=1

(Yi − Ŷi)
2

(9a)InputSusceptible =Total_Population− Total_Infectious

(9b)InputInfectious =Total_Infectious − Recovered − Deceased

(9c)InputRecovered =Recovered

(9d)InputDeceased =Deceased
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The input of our model are then normalized into percentages by dividing all data for the total population to 
match with the input of our proposed method described in “The BeCaked model”.
Global evaluation. In the evaluation process, to choose the most optimal day lag number n, we conduct 
the experiments on global using different day lag numbers. According to the result of McAloon’s study (2020)49, 
the day lag number varies from 5 to 14 days, so that, we test our model with 7, 10 and 14 day lag to find the most 
suitable one.

To determine the suitable value n of the lag days, we used the recursive stategy50 to perform k-step forecasting. 
In details, a k-step forecasting process is described as follows. Firstly, we only use n-day data (June (30− n+ 1)

th–June 30th) as the initial input for forecasting the next n+ 1 th day (the number n is corresponding to n-day 
lag), which n is set as 7, 10, 14, respectively. Then, we repeat that process k times. At each step, we predict the 
number of cases (susceptible, infectious, recovered, deceased) for the next day and use it (our predicted cases) 
as the input for the next iteration. In this process, because the testing data is July 2020 data, the number step k 
varies from 1 to 31, we eventually choose k as the possible maximal value of 31.

In Table 1, we have shown our forecast results using 7, 10 and 14 day lag in R Squared ( R2 ) (Eq. (10)) and 
Mean Absolute Percentage Error (MAPE) (Eq. (11)) metric.

The RSS, TSS in Eq. (10) denote for the Residual Sum of Squares and the Total Sum of Squares. The R2 metric given 
in Eq. (10) provides an insight into the similarity between real and predicted data. The closer to 1 the R2 is, the 
more explainable the model is. The MAPE given in Eq. (11) tells us about the mean of the total percentage errors 
for k-step forecasting. If the value of this MAPE metric is closer to 0, it indicates the better results.

In Eq. (11), k, Yi , Ŷi denote for the number of steps, the actual cases and our predicted cases, respectively.
According to the results shown in Table 1, the highest performance of our model was achieved with 10-day 

lag, so that we chose the number of day lag as 10 for further evaluations. We also visualized our results for a 
better overview using 10-day lag. Figure 8a shows the comparison of daily infectious cases between real data 
and BeCaked forecasting results while Fig. 8b shows that of the total infectious cases. Also, the comparison 
of recovered and deceased cases are presented in Fig. 8c,d, respectively. Moreover, we visualized the ( β , γ , µ ) 
corresponding to the results of forecasting in Fig. 9. In this period (July 01st–July 31st), this pandemic in many 
countries started to be controlled, so that the overall transmission rate decreased. Due to the slower speed of 
transmission, the recovery rate increased. The hidden truth here is that the health system in those countries was 
load-reduced and doctors could pay more attention to currently infected patients. Because of the above reasons, 
the mortality rate decreased too.

In Table 3, we compared our model with some top-tier forecasting-specialized others from statistical mod-
els to machine learning models including Autoregressive Integrated Moving Average (ARIMA)12, Ridge51, Least 
Absolute Selection Shrinkage Operator (LASSO)52, Support Vector Machine for Regression (SVR)53, Decision Tree 
Regression (DTR)54, Random Forest Regression (RFR)55 and Gradient Boost Regression (GBR)56. Except for ARIMA, 
the other models use the same number of day lag n as our BeCaked does (which is 10) to forecast the future. The 
specific configurations of each model are listed in Table 2. Even though these models are widely used in predict-
ing the future for time-series data and achieving comparative  results50, in the case of the COVID-19 long time 
forecasting problem, with the exception of our model, only Ridge and LASSO have acceptable results. Our model 
is proved to attain overall comparative performance with those mentioned methods by these results given below.

(10)R2 = 1−
RSS

TSS

(11)MAPE =
1

k

k∑

i=1

|Yi − Ŷi|

Yi

Table 1.  Comparison of BeCaked performance with 7, 10 and 14 day lag. Best results are in [bold].

7-day 10-day 14-day

Total infectious cases

R2 0.77284 0.99790 0.95795

MAPE 0.05592 0.00509 0.02552

Daily infectious cases

R2 0.89739 0.98050 0.87828

MAPE 0.12455 0.01268 0.05842

Recovered cases

R2 0.45429 0.98784 0.67187

MAPE 0.10912 0.01869 0.08676

Deceased cases

R2 −22.25663 0.98904 −12.13873

MAPE 0.32878 0.00676 0.24510
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Country evaluation. At the country level, we also conducted the same evaluation process as we did in 
global scale. We chose six countries with different locations, social policies, and anti-epidemic strategies, etc. for 
testing our model in various conditions.

Firstly, we fit our model for each country until the end of June 2020. Then, we used the July 2020 cases for the 
testing phase. In this comparison, we used the same methods with configurations as we did at the whole world 
level. These below evaluations were done in 1-step (Table 4), 7-step (Table 5) and 15-step (Table 6) forecasting 
using the daily infectious cases. The reason why we did more comparisons will be discussed in “Discussion”.

In July 2020, many countries began to have better control of the development of this COVID-19 pandemic 
by restricting outside agents from spreading viruses. However, some countries have reopened after lockdown, 
such as the United State, Australia, Italy, etc. This became a favorable condition for external factors to directly 
influence the increase in the number of cases in those countries. Therefore, to effectively forecast the long-time 
situation of those countries, a forecasting model must have the ability to adapt to emerging changes in the pan-
demic exponential growth rate. Due to that, the compared results below reflected the strong adaptive capacity 
of our BeCaked model along with others.

For a more challenging evaluation, we kept the training set to the end of June 2020 while stimulating the 
progress of long-term forecasting. In detail, firstly, we used 10 final days of June 2020 cases as the initial input and 
predict the pandemic in July and August 2020. On the next day in stimulating, we used the data of nine last days 
of June and July 1st as the input and re-produce the forecasting until the end of August. This process is the same 
as the natural behavior of most real-life forecast systems as we need to re-run the forecasting each day to get the 
most accurate result. With this testing, our model shows not only its performance but also its capacity of catch-
ing the changes of the pandemic. Figures 10, 11, 12 and 13 show the predicting results of daily infectious cases 
at the beginning and middle of July and August 2020, respectively. According to these figures, we can observe 

Figure 8.  Comparison of the number of cases between real data and BeCaked forecasting results from 
161st–191st day (Jul. 1st 2020–Jul. 31st 2020) of the world.
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that, like other prediction models, BeCaked only works well when given sufficient input of historical data. As a 
result, in Fig. 13, BeCaked enjoys good accuracy in all countries when forecasting.

Moreover, unlike other blackbox-like prediction models, BeCaked can also provide an explanation for its 
results, in terms of the parameters ( β , γ , µ ). For example, in Fig. 13, let us consider the cases of Spain and the 
United Kingdom. Even though the predicted curves of those two countries run in similar shapes, their param-
eters tell us different stories. The common things between those two countries are that they failed to control the 
transmission rate (maybe their lock-down policy did not make sufficient impacts). However, in Spain, they had 
been suffering from a high mortality rate for a long time, showing that their health system had difficulty in deal-
ing with a large number of infectious cases, even though the recovery rate had also been increasing (i.e. more 
patients were cured daily). In contrast, in the United Kingdom, the rates of recovery cases and mortality cases 
gradually reduced at the early stage, indicating that the government somehow well controlled the situation in 
this period, which was also implied by the reduction of the transmission rate. However, when the transmission 
rate began to increase (corresponding to the time the lock-down policy had been relaxed in this country), the 
situation had been worse quickly in terms of mortality. At the end of this experiment, even though the regression 
models of two countries generate two similar shapes, like previously discussed, the parameters ( β , γ , µ ) indicate 

Figure 9.  Predicted transition rates from 161st–191st day (Jul. 1st 2020–Jul. 31st 2020) of the world.

Table 2.  Configurations of top-tier forecasting-specialized methods.

Model Configurations

ARIMA p = 1; d = 0; q = 0;

Ridge α = 1; solver = svd; tolerance = 10−3;

LASSO α = 1;max_iter = 1000; selection = cyclic; tolerance = 10−4;

SVR kernel = rbf ; γ = scale;C = 1; ǫ = 0.1; tolerance = 10−3;

DTR criterion = mse; splitter = best;min_samples_split = 2;min_samples_leaf = 1;

RFR n_estimators = 100; criterion = mse;min_samples_split = 2;min_samples_leaf = 1;

GBR
loss = least_squared; n_estimators = 100; criterion = friedman_mse;

min_samples_split = 2;min_samples_leaf = 1;max_depth = 3; tolerance = 10−4;
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that Spain already controlled the situation and things would be improved. Meanwhile, the United Kingdom still 
had a hard time awaiting ahead. Real data taken afterward confirmed our predictions.

In other countries, BeCaked can also be able to tell us what happened “behind the scenes” of the generated 
results. In Australia, the major turn occurred when the government succeeded in controlling the transmission 
rate by their lock-down policy. From that point, the recovery rate increased and the mortality rate decreased in 
this country, leading to the stable situation they are enjoying now.

Meanwhile, in Russia, things are up and down many times, reflecting the rapid policy changing of this country 
during this period. However, this country generally attempts to maintain less direct contact in the community 
to reduce the transmission rate, which makes our model promise a better situation for them.

In the United States, their social distancing policies had been somehow proved effective when both transmis-
sion rate and mortality rate had gradually reduced. However, the absolute number of infectious cases has still 
stably increased, which can be explained by the reducing number of recovery cases. This shows that the country 
was struggling to handle the infected patients in the previous days of the outbreak.

In a broader view, we can consider that Spain and the United Kingdom had an almost unchanged policy 
which leads to a familiar situation, so that our model can predict their pandemic future accurately in the very 
early time. The evidence for this is that the shape of β , γ , µ line of these two nations at Fig. 10, 11, 12 and 13 are 
almost the same. Australia and the United States, in the past, faced the same situation but they did not provide 

Table 3.  Comparison of BeCaked and top-tier forecasting-specialized methods with 31-step forecast. Best 
results are in [bold].

BeCaked ARIMA Ridge LASSO SVR DTR RFR GBR

Total infectious cases

R2 0.99790 −2.84161 0.98777 0.99907 −18.11617 −2.84160 −2.99678 −2.84598

MAPE 0.00509 0.23243 0.01346 0.00112 0.62084 0.23243 0.23929 0.23262

Daily infectious cases

R2 0.98050 −2.31481 0.39289 0.92269 −29.01740 −2.31481 −2.44266 −2.32188

MAPE 0.01268 0.38969 0.03052 0.00350 0.78887 0.38969 0.39887 0.38998

Recovered cases

R2 0.98784 −3.07765 0.76234 0.96656 −13.46395 −3.07765 −3.24544 −3.08040

MAPE 0.01869 0.29221 0.07195 0.01153 0.64754 0.29221 0.30097 0.29236

Deceased cases

R2 0.98904 −2.81195 0.88473 0.53645 −46.32486 −2.81195 −2.95304 −2.82239

MAPE 0.00676 0.13248 0.01988 0.04018 0.55858 0.13248 0.13594 0.13274

Table 4.  Comparison of BeCaked and top-tier forecasting-specialized methods at country level with 1-step 
forecast. Best results are in [bold].

BeCaked ARIMA Ridge LASSO SVR DTR RFR GBR

Australia

R2 0.99112 0.98329 0.99337 0.99531 −0.48798 0.98342 0.96787 0.98299

MAPE 0.04703 0.10236 0.01093 0, 04078 0.85609 0.10204 0.14942 0.10344

Italy

R2 0.96381 0.94660 0.92646 0.88220 −22.56497 0.94889 0.90082 0.94876

MAPE 0.00496 0.01655 0.00024 0.05999 0.93214 0.01684 0.02570 0.02165

Russia

R2 0.92922 0.91663 0.98479 0.92367 −108.89720 0.91643 0.87353 0.91854

MAPE 0.00004 0.02856 0, 00007 0.00938 0.77448 0.02851 0.04442 0.02938

Spain

R2 0.98765 0.97214 0.98591 0.98362 −10.84390 0.97212 0.94968 0.97053

MAPE 0.00174 0.01418 0.00325 0.01881 0.74045 0.01406 0.02173 0.01522

United Kingdom

R2 0.99833 0.98713 0.99764 0.96375 −449.89408 0.98748 0.96991 0.98463

MAPE 0.00030 0.00255 0.00014 0.00437 0.52586 0.00249 0.00397 0.00282

United States

R2 0.99688 0.98676 0.99648 0.99461 −9.99942 0.98676 0.96834 0.98633

MAPE 0.00552 0.02644 0.00004 0.00069 0.62264 0.02642 0.04185 0.02687
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any actions or policies to prevent external factors from spreading the virus. This is the reason why their infectious 
case increased dramatically. But, because in the past, they have faced this situation, our model can give good 
forecast results after “realizing” this situation (after about 30 days). Considering the parameter lines of the two 
above nations, we can see that in the stimulating progression, they are not stable. But in general, their directions 
are the same as the first forecast. Towards Italy and Russia, our model takes a little bit more time to change the 
direction of the forecast line, due to the strange situation. We can get this by comparing the parameter lines in 
Figs. 10, 11, 12 and 13 of Australia and Russia. The direction of these lines has changed as the policies of these 
two nations become loose. To be simple, it is because there is no pattern of this situation in the training data 
(pandemic data until the end of June 2020).

Table 5.  Comparison of BeCaked and top-tier forecasting-specialized methods at country level with 7-step 
forecast. Best results are in [bold].

BeCaked ARIMA Ridge LASSO SVR DTR RFR GBR

Australia

R2 0.88112 0.74039 0.99115 0.98878 −0.94255 0.73989 0.68456 0.73797

MAPE 0.18610 0.32529 0.06932 0.11617 0.88976 0.32524 0.36291 0.32645

Italy

R2 0.89690 0.66110 −0.20361 0.63946 −20.00836 0.69335 0.53913 0.69311

MAPE 0.02365 0.06104 0.00444 0.12168 0.93036 0.06223 0.06936 0.06644

Russia

R2 0.85845 0.70449 0.92995 0.84984 −106.05299 0.70217 0.59478 0.71031

MAPE 0.00222 0.10383 0.00087 0.02079 0.77662 0.10370 0.11736 0.10442

Spain

R2 0.98013 0.68411 0.98210 0.93588 −12.06027 0.68644 0.61741 0.68019

MAPE 0.00836 0.05367 0.01601 0.04576 0.74972 0.05306 0.05929 0.05420

United Kingdom

R2 0.99413 0.77401 0.98469 0.84731 −456.43229 0.77985 0.72832 0.76877

MAPE 0.00119 0.01027 0.00164 0.00918 0.52910 0.01004 0.01131 0.01037

United States

R2 0.98679 0.79943 0.98702 0.97658 −11.07041 0.79943 0.74460 0.79768

MAPE 0.01900 0.09879 0.00080 0.00067 0.64423 0.09871 0.11258 0.09912

Table 6.  Comparison of BeCaked and top-tier forecasting-specialized methods at country level with 15-step 
forecast. Best results are in [bold].

BeCaked ARIMA Ridge LASSO SVR DTR RFR GBR

Australia

R2 0.09703 −0.10753 0.92366 0.86414 −1.69800 −0.12140 −0.20682 −0.12229

MAPE 0.40278 0.50951 0.18428 0.26379 0.92842 0.51087 0.53734 0.51162

Italy

R2 0.61706 −0.07923 −10.41220 −2.08983 −16.35794 0.07287 −0.17657 0.07720

MAPE 0.05745 0.10709 0.01292 0.23014 0.92750 0.10942 0.11508 0.11293

Russia

R2 0.27693 −0.09658 −0.28502 −0.71668 −102.60031 −0.09129 −0.19068 −0.07648

MAPE 0.01246 0.18125 0.00158 0.05668 0.77912 0.18115 0.19226 0.18170

Spain

R2 0.90753 −0.19684 0.65409 0.38282 −13.40342 −0.22237 −0.28920 −0.23309

MAPE 0.01356 0.09955 0.06038 0.11265 0.75909 0.09886 0.10272 0.09994

United Kingdom

R2 0.99278 −0.06679 0.90663 −0.10126 −465.84698 −0.02151 −0.12357 −0.04241

MAPE 0.00268 0.02080 0.00436 0.02445 0.53362 0.02024 0.02146 0.02054

United States

R2 0.94760 −0.04783 0.96380 0.93578 −12.74072 −0.04770 −0.15771 −0.05102

MAPE 0.04370 0.18476 0.00917 0.00477 0.67073 0.18467 0.19654 0.18503
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With the above result, we can consider that our proposed solution can catch up with the change in the pan-
demic situation. With the unchanged training set, our model can give very good forecast results if the situation 
is more stable. In case a strange situation occurs, our model needs time to give a more accurate forecast.

In the real-life application, the forecasting models are updated regularly using reinforcement learning meth-
ods in order to make them more “update” to new situations. Therefore, to get better results of our model in 
real-life, we need to finetune it with new data every one or two weeks.

Discussion
Forecasting results. Forecasting a pandemic has never been easy, especially for this COVID-19 situation. 
The effectiveness of a forecasting model not only comes from the exact results but also the explanation or the 
root cause of those predicted numbers. Until now, almost no pure mathematical or machine learning model can 
achieve that double standard. Therefore, we tried to combine both models to create an Explainable AI one to 
solve that problem. The combination of Variational Autoencoder and SIRD we have constructed can overcome 

Figure 10.  Forecasting results with transition rates of 161th–222nd day (Jul. 1st 2020–Aug. 31st 2020) using 
data of 151st–160th day (Jun. 21st 2020–Jun. 30th 2020).
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the limitations of each other and take advantage of semi-supervised learning to be more efficient in the training 
process.

With the support of Deep Learning, based on the number of infectious, recovered and deceased cases, our 
BeCaked model can determine the ( β , γ , µ ) parameters of the SIRD model. Using these parameters, the dif-
ferential equations can be solved properly to predict the development trend of the COVID-19 pandemic. The 
significance of BeCaked model is to make the predictions among these parameters of the differential equations 
based on the number of infectious, recovered, and deceased cases in the past, instead of accurately predicting 
the number of those cases. Therefore, it can predict the trend of an increase, decrease, or a peak in the number of 
susceptible, infectious, recovered and deceased cases. These predictions can help the authorities to give appropri-
ate strategies in order to deal with the spread of this pandemic.

In the evaluation process, we compared the performance between our BeCaked model and current top-tier 
forecasting-specialized models to prove the reliability of ours. In the global evaluation, our model scored almost 
the highest performance, while at the country-scale, its effectiveness drops significantly in some countries at 
15-step forecast. The mystery behind this unusual is the difference between an open system and a closed system. 

Figure 11.  Forecasting results with transition rates of 176th–222nd day (Jul. 16th 2020–Aug. 31st 2020) using 
data of 166th–175th day (Jul. 6th 2020–Jul. 15th 2020).
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The global can be considered as a closed system because there is no outside factor affecting the COVID-19 pan-
demic situation. Contrasting to the global, each country is an open system due to many unforeseen factors such 
as illegal entry, inaccurate testing, etc. Therefore, when applying any forecasting model to any open system, the 
most important and effective decision of the model is “how quickly the model is able to catch up with the trend 
of the pandemic”. Due to that, when comparing at the country level, we only compare up to 15-step forecasting, 
because the previous  study49 shows that 14 days is the period for the situation of this pandemic changes.

Model limitations. Although our model can adapt to the new pandemic situations, it takes time to realize 
the trend depending on the local policies of the considered area (for example, in the case of Spain, it takes effect 
immediately while in the case of Russia, it takes about 30 days). This is the foreseen problem because the factors 
that affect the infection of this pandemic are diverse. Some important factorials such as age, underlying medi-
cal conditions, restriction policies, quarantines, etc. are said to be very region-specific and we lack information 

Figure 12.  Forecasting results with transition rates of 192th–222nd day (Aug. 1st 2020–Aug. 31st 2020) using 
data of 182nd–191th day (Jul. 22nd 2020–Jul. 31st 2020).
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about those factors. When a new variant of Coronavirus appears, eg. Delta or Omicron, the performance of our 
model visibly suffered from less accuracy due to the sudden changes in infected cases.

In practice, when applying machine learning models to forecast an epidemic, forecasting systems often incor-
porate reinforcement learning57 strategies to deal with strange situations when involved epidemiological factors 
change. In our context of COVID-19 prediction, since the pandemic model can always be reflected by the SIRD 
model with ( β , γ , µ ) parameters, the reinforcement process can help to quickly determine new suitable param-
eter values once finetuned with recent data. Typically, the operational mechanism of reinforcement learning is 
as follows. 

1. Get model and data for initial training.
2. Train the model with initial data.
3. Do k-step forecasting every day with the trained model.

Figure 13.  Forecasting results with transition rates of 207th–222nd day (Aug. 16th 2020–Aug. 31st 2020) using 
data of 197th–206th day (Aug. 6th 2020–Aug. 15th 2020).



21

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7969  | https://doi.org/10.1038/s41598-022-11693-9

www.nature.com/scientificreports/

4. If in m days, the average difference between the forecast results and the actual number of cases exceeds a 
certain threshold, the system automatically takes the data of recent days and finetunes the model on those 
data.

5. In case the difference is within the allowable threshold, the system continues to keep the old model for the 
next day.

With the above operation flows, the initial trained model can adapt to new situations and produce better up-
to-date results. In addition, it is also worth noting that this strategy was really applied with our real system at 
http:// cse. hcmut. edu. vn/ BeCak ed during the fourth wave of COVID-19 in Ho Chi Minh City, Vietnam under 
the spreading of the Delta variant at May 2021. Our system caught a sudden change in the real collected data of 
the city and recent data had been used to finetune the system for a few weeks. The system then became stable 
again afterward. It showed that using the reinforcement learning strategy, our system can partially solve the 
problem of sudden changes in data due to unforeseen factors and also helps the model to quickly adapt to the 
new situation in case of a new variant.

Conclusion
With the model we have proposed, the pandemic has been modeled and forecasted relatively accurately. We 
expect this model to be widely applied in each country and region as a reference source in pandemic prevention. 
In the future, we will continue to experiment with more extensive variations of the SIRD model on more detailed 
pandemic datasets. Also, we will try to combine many other SOTA techniques for continuously-like data with 
mathematical models to solve other related problems as mentioned in “Related works”. At the same time, we will 
also continue to maintain the website, update disease data daily and conduct reinforcement learning methods 
on the proposed model to have future forecasts as accurate as possible. This model is a non-profit community 
project, which is of great significance for development in all aspects if properly applied. The forecast of the 
situation of the COVID-19 pandemic enables the government and citizens together to comply with necessary 
regulations such as quarantine to prevent the spread of the COVID-19 pandemic. Policies and regulations are 
essential and most effective when being implemented before it is too late. For example, if we predict the resur-
gence of the COVID-19 pandemic after a peaceful period, we will be more proactive in preventing as well as 
reducing the number of people infected and fatal. The COVID-19 pandemic has had a great impact on people’s 
lives, seriously affecting the economy and society. Therefore, if everyone works together to prevent the epidemic 
of COVID-19, then socio-economic life can return to stability and continue to develop. This is the core purpose 
that this study wants to achieve.

Regarding the future work, the combination of VAE, with the classical SIRD model is one of the most interest-
ing and promising medical and computer science projects if it is further developed. The application of computer 
science, especially Artificial Intelligence in medicine, is a step towards the future. In one day not far, comput-
ers can replace humans to do complex things, the things that require constant calculation and repetition. Like 
forecasting using the SIRD model, computer science in general and Artificial Intelligence in particular play an 
essential role to approximate the variables β , γ and µ . It is the AI that helps us complete the differential equation 
to be able to predict the situation of the COVID-19 pandemic. But computer science does not stop at predicting 
the situation of the COVID-19 pandemic. With this model, we can find the suitable coefficients for problems 
using the differential equation or other complex stools in issues such as gene sequencing, diet generating, predic-
tion of other diseases, etc. Moreover, with the development of Artificial Intelligence, we can apply it to medicine 
such as diagnosing, screening disease, revealing risk factors, etc. in each patient. The world is evolving and the 
intersection of the fields is of utmost importance. This has contributed to making people’s lives become better, 
especially since human health issues are being cared for more and more. Our explainable AI model of BeCaked 
still has much room for further improvements. Firstly, the basic SIRD model can be replaced by other upgraded 
models such as  SEIR7 or  SEIPEHRF18. Moreover, we can further encode additional information such as travel 
history or contact information to make the model predictions closer to practical situations. In terms of Deep 
Learning techniques, the latest encoding models such as  BERT58 or GPT-359 can be also considered as well to 
make the encoded information more meaningful.

Data availability
The COVID-19 data analysed during the current study are available from Johns Hopkins University Center for 
Systems Science and Engineering in the COVID-19 repository, https:// github. com/ CSSEG ISand Data/ COVID- 
19.  The world and countries population data analysed during the current study are available from Worldometer 
on their website, https:// www. world omete rs. info/ world- popul ation/ popul ation- by- count ry.

Code availability
Our implementation of proposed model is available at https:// github. com/ nguye nquan gduc2 000/ BeCak ed.

Appendix 1: The novel name “BeCaked”
In view of the fact that a new variant of coronavirus and COVID-19, the illness they cause, are disastrously 
spreading among communities in many countries. Therefore, a set of effective non-pharmaceutical interventions, 
known as social distancing, helps to reduce the spread of this pandemic without pharmaceutical treatments by 
keeping an acceptable distance from each other (the distance specifically differs from country to country), avoid-
ing gatherings into crowded places. The name “BeCaked” resulting from that strong motivation, standing for Be 
Careful and Keep Distance, is named in the spirit of encouraging people to strictly comply with the coronavirus 

http://cse.hcmut.edu.vn/BeCaked
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://www.worldometers.info/world-population/population-by-country
https://github.com/nguyenquangduc2000/BeCaked
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legislation in order to protect themselves and their society. Up till now, our website system which can be visited 
at http:// cse. hcmut. edu. vn/ BeCak ed has fully implemented for visualizing and observing purposes.

Appendix 2: BeCaked web‑based system illustrations
In order to simplify the use of the BeCaked model and respond to a wide variety of users, we implemented a 
website to statistic and visualize the forecasting results of BeCaked model. Our website includes two main parts: 
overview and future forecast.

The overview page shown in Fig. 14 includes a map which shows the spread-level of the epidemic in nations, 
statistics of the latest infectious, recovered and deceased cases, 30 days of epidemic history and a future 30-day 
forecasting results. Users can change the type of cases shown in the world map by clicking on the total cases of 
that type located under the map. Also, users can search the cases of a specific country by entering the country 
name in the search box above the information table.

The forecast for the future shows a long-term forecast for the COVID-19 pandemic. Users can get a reliable 
prediction for a specific period of time by entering the start and end date. Our system will then return the fore-
casting results of infectious, recovered and deceased cases of each day, and a line chart represents those metrics 

http://cse.hcmut.edu.vn/BeCaked


23

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7969  | https://doi.org/10.1038/s41598-022-11693-9

www.nature.com/scientificreports/

Figure 14.  Homepage of the web user interface including COVID-19 map created using HERE  Maps60.
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to give the user a more overview of the spread of this pandemic during that time. An example of using this page 
is presented in Fig. 15. In this example, we get the forecasting results from January 22nd 2020 to June 28th 2023. 
Moreover, users can search for specific day cases by typing the day in the search box.
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