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ABSTRACT Subgraph matching is a challenging problem with a wide range of applications in drug
discovery, social network analysis, biochemistry, and cognitive science. It involves determining whether
a given query graph is present within a larger target graph. Traditional graph-matching algorithms provide
precise results but face challenges in large graph instances due to the NP-complete nature of the problem,
limiting their practical applicability. In contrast, recent neural network-based approximations offer more
scalable solutions but often lack interpretable node correspondences. To address these limitations, this article
presents a multi-task learning framework called xNeuSM: Explainable Neural Subgraph Matching, which
introduces Graph Learnable Multi-hop Attention Networks (GLeMA) that adaptively learn the parameters
governing the attention factor decay for each node across hops rather than relying on fixed hyperparameters.
Our framework jointly optimizes both subgraph matching and finding subgraph-isomorphism mappings.
We provide a theoretical analysis establishing error bounds for GLeMA’s approximation of multi-hop
attention as a function of the number of hops. Additionally, we prove that learning distinct attention decay
factors for each node leads to a correct approximation of multi-hop attention. Empirical evaluation on
real-world datasets shows that xNeuSM achieves substantial improvements in prediction F1 score of up
to 34% compared to approximate baselines and, notably, at least a seven-fold faster query time than exact
algorithms. With these results, xNeuSM can be applied to solve matching problems in various domains
spanning from biochemistry to social science.

INDEX TERMS Explainability, graph neural networks, learnable multi-hop attention, subgraph matching.

I. INTRODUCTION
In recent decades, a significant focus has been developing
practical solutions for NP-hard graph problems. This wave
of interest has been motivated by the abundance of diverse
graph data in the public domain [1]. One prominent challenge
in this domain is tackling large graphs, and a vital aspect
of this is addressing the issue of subgraph matching.
Essentially, subgraph isomorphism or subgraph matching

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Fiumara .

involves determining whether a given query graph is iso-
morphic to a subgraph within a target graph. Despite the
inherent NP-completeness, this problem holds paramount
significance, as it applies to various domains, including
physics [2], social network analysis [3], [4], bioinformat-
ics [5], [6], [7], graph retrieval [8], and computer vision [9].
This acceleration has driven researchers to devise scalable
and efficient algorithms tailored to analyze extensive graphs
like those found in social, biological networks and chemical
molecules. Throughout the past decades, numerous works
have been developed, yielding a spectrum of practical
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FIGURE 1. A typical subgraph matching result.

solutions encompassing various algorithms [10], [11], [12],
[13], [14], [15], [16].

The conventional approaches [11], [17] rely on exact com-
binatorial algorithms. While exact computation of subgraph
matching yields precise results in both subgraph matching
(Figure 1-A) and matching explanation (finding node-to-
node correspondences) among nodes across the two graphs
(Figure 1-B), they confront with limited scalability when
applied to larger query pattern sizes, which is attributed to
the NP-complete nature of the problem. Recent efforts [12],
[13], [14] aimed to enhance scalability by devising efficient
matching orders and formulating powerful filtering strategies
to shrink the number of candidates within the target graph.
Although these efforts enable matching to be extended to
larger target graphs, the query size remains restricted to just
a few tens of nodes; this scalability level falls below what is
needed for practical applications.

Subgraph matching is paramount due to its wide-ranging
applications, but it poses a substantial challenge. In response
to this challenge, neural-based approaches [15], [16], [18]
have been proposed. These approaches aim to strike a balance
between speed and accuracy. They demonstrate that by train-
ing a matching function to approximate the matching metric,
it becomes feasible to identify candidate matches for a query
pattern more rapidly than traditional combinatorial methods.
The key innovation in these approaches lies in the use of graph
neural networks (GNNs) to learn the matching function.
However, these learning algorithms heavily rely on first-order
dependencies within each layer of the GNN architecture,
as highlighted in [15] and [16]. This implies that the receptive
field of a single GNN layer is limited to one-hop network
neighbors, which are immediate neighbors in the graph.
Nevertheless, recent research has revealed that data obtained
from various complex systems may exhibit dependencies that
extend beyond the first order, going as far as fifth-order
dependencies [19]. This contrasts with the earlier assumption
of solely first-order network relationships. Oversimplifying
the assumption of first-order network dependencies may
lead to neglecting the generalizability of these methods
in fully capturing patterns of varying sizes. Consequently,

this oversimplification can result in a significant drop in
performance across different domains [15], [16], [18].

Balancing efficiency (O.1) and explanation (O.2) in a
subgraph matching algorithm are desirable goals. However,
developing a learning-based approach that achieves both
objectives poses a significant challenge (see Section IV-A
for a detailed discussion). Inspired by the recent success
of Graph Multi-hop Attention Networks (GMA) [20],
we have adopted the concept of GMA to address these
two objectives simultaneously. Unlike existing multi-hop
attention mechanisms [21], [22], [23] in GMA that rely on a
fixed attention decay factor for all nodes, this work introduces
an innovative variant capable of adaptively learning this
factor in a node-specific manner. This variant, termed
Graph Learnable Multi-hop Attention Networks (GLeMa),
parameterizes distinct attention decay factors for each node
to govern its contributions across neighborhoods during
multi-hop message passing. Furthermore, we provide a
theoretical analysis establishing approximation error bounds
for GLeMa’s modelling of multi-hop attention as a func-
tion of the number of hops. Additionally, we formally
prove that learning node-specific attention decays enables
GLeMa to capture relational patterns in graph-structured data
accurately.

By incorporating the learnable multi-hop attention mech-
anism, GLeMA achieves a commendable level of general-
ization within the data graph while maintaining efficiency
(achieving O.1). However, simultaneously achieving O.1
and O.2 is still challenging. Unlike previous neural-based
approaches [15] that directly learn from separate adjacency
matrices for the pattern and target graphs, our newly devised
unified proxy inputs facilitate the comprehensive capture
of both intra- and inter-relations between the pattern and
the target graph. This, in turn, enhances the explanation
regarding explicit node alignment (achieving O.2). Addi-
tionally, we optimize the tasks of subgraph matching and
matching explanation concurrently in an end-to-end multi-
task manner. This approach leads to a mutually reinforcing
synergy between both tasks, contributing to the overall
effectiveness and efficiency of the framework. To the best of
our knowledge, none of the existing learning-based methods
have been able to accomplish both of these objectives
simultaneously.

We named our approach xNeuSM, Explainable Neural
Subgraph Matching with Graph Learnable Multi-hop Atten-
tion Networks. Our contributions are stated as follows:
• Graph Learnable Multi-hop Attention Networks: We
introduceGLeMa, which possesses the ability to directly
learn node-specific attention decay factors from the
data. This adaptable mechanism mitigates biases that
could emerge from fixed attention decay mechanisms
applicable universally across nodes, thus averting poten-
tial suboptimal outcomes. Our approach guarantees
that the model’s decisions are data-driven, steering
clear of potential influences stemming from suboptimal
parameter selections.
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• Theoretical justifications for node-specific multi-hop
attention mechanism: In addition to the extensive
empirical results, we conduct a theoretical analysis to
approximate the error in multi-hop attention computa-
tion. Furthermore, we offer theoretical proof regarding
the learning of attention decay factors specific to
nodes. Our demonstration illustrates that the utilization
of distinct decay factors remains consistent with the
approximation of multi-hop attention and represents a
generalized version of the previous universal attention
decay factor utilized in earlier GMA models.

• Multi-task learning: We optimize both the subgraph
matching and matching explanation tasks simultane-
ously within an end-to-end multi-task learning frame-
work. This strategy fosters a mutually reinforcing
synergy between these tasks, ultimately enhancing the
overall effectiveness and performance of our framework.

The following sections outline the structure of this paper.
Section II provides the study’s foundational background.
Section III discusses related works, situating our contribu-
tions within existing literature. Section IV introduces our
framework and its components. In Section V, we propose
a method to construct a joint representation for pattern and
target graphs, facilitating intra- and inter-graph relationships.
Section VI details GLeMA, designed for learning graph
representation and inter-graph interactions. Section VII
explains the aggregation of node embeddings to address
subgraph matching and matching explanation tasks using a
novel objective function. Section VIII provides theoretical
justifications for approximating multi-hop attention with
node-specific teleport probability. Section IX evaluates our
approach using public datasets across various domains,
showing a seven-fold increase in subgraph matching speed,
a 27% improvement in accuracy, and a 34% increase in
F1 score compared to NeuroMatch on the COX2 dataset,
while maintaining comparability with exact methods. Finally,
Section X summarizes the paper.

II. BACKGROUND
In this section, we establish precise notations necessary
preliminaries and formally define our targeted problem
involving subgraph matching and matching explanation.

A. PRELIMINARIES
In this study, we centre on solving subgraph matching and
matching explanation problems on labelled, undirected, and
connected graphs. Nevertheless, our proposed framework
readily accommodates extensions to encompass directed
graphs. The notations employed throughout this study are
briefly outlined and summarized in Table 1.

We subsequently provide formal definitions for labelled,
undirected, and connected graphs in Definition 1, and
extend this to include directed graphs in Definition 2. The
concepts of labelled subgraphs, including both non-induced
and induced subgraphs, are defined in Definitions 3, 4,
and 5, respectively. Definition 6 presents the concept of

TABLE 1. Summary of notation used.

labelled graph isomorphism. Building on these definitions,
we introduce the problems of non-induced and induced
labelled subgraph isomorphism in Definitions 7 and 8.

This article focuses on induced labelled subgraph iso-
morphism, which is inherently more challenging to solve
than the non-induced variant due to the limited number of
polynomial-time solvable exceptional cases [24].
Definition 1 (Labelled Undirected Connected Graph): A

labelled undirected connected graph is a graph represented
with a 3-tuple G = (V ,E, l) where

1) V is a set of nodes,
2) E ⊆ [V ]2 is a set of edges (u, v), where u, v ∈ V
3) ∀v ∈ V , deg(v) ≥ 1
4) l : V → 6 is a labelling function and 6 is the set of

node labels.
Definition 2 (Labelled Directed Connected Graph): A

labelled directed connected graph is a graph represented with
a 3-tuple G = (V ,E, l) where

1) V is a set of nodes,
2) E ⊆ [V ]2 is a set of edges (u, v), where u is tail node,

v is head node and u, v ∈ V
3) ∀v ∈ V , (degin(v) ≥ 1) ∨ (degout (v) ≥ 1)
4) l : V → 6 is a labelling function and 6 is a set of

node labels
Definition 3 (Labelled Subgraph): Let G = (VG,EG, lG)

and S = (VS ,ES , lS ) be two labelled graphs. S is a
subgraph of G (denoted as S ⊆ G) if and only if:
1) VS ⊆ VG and
2) ES ⊆ EG and
3) ∀v ∈ VS , lS (v) = lG(v).
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Definition 4 (Non-Induced Labelled Subgraph): Let G =
(VG,EG, lG) and S = (VS ,ES , lS ) be two labelled graphs.
S is a non-induced subgraph of G (denoted as S ⊆ni G) if
and only if:

1) S ⊆ G and
2) ∃u, v ∈ VS , (u, v) /∈ ES ∧ (u, v) ∈ EG .
Definition 5 (Induced Labelled Subgraph): Let G = (VG,

EG, lG) and S = (VS ,ES , lS ) be two labelled graphs. S is
an induced subgraph of G (denoted as S ⊆id G) if and only
if:

1) S ⊆ G and
2) ∀u, v ∈ VS , (u, v) ∈ ES ⇐⇒ (u, v) ∈ EG .
Definition 6 (Labelled Graph Isomorphism): Given two

graphs P = (VP ,EP , lP ) and S = (VS ,ES , lS ), P and
S are considered isomorphism (denoted as P ∼= S) if and
only if there exists a bijection f : VP → VS such that:

1) ∀v ∈ VP , lP (v) = lS (f (v)) and
2) ∀u, v ∈ VP , (u, v) ∈ EP ⇐⇒ (f (u), f (v)) ∈ ES .
Definition 7 (Non-Induced Subgraph Isomorphism): Given

two graphs P = (VP ,EP , lP ) and T = (VT ,ET , lT ), P is
considered as non-induced subgraph isomorphic to T if there
exists S = (VS ,ES , lS ) such that:

1) S ⊆ni T and
2) P ∼= S .
Definition 8 (Induced Subgraph Isomorphism): Given

two graphs P = (VP ,EP , lP ) and T = (VT ,ET , lT ), P is
considered as induced subgraph isomorphic to T if there
exists S = (VS ,ES , lS ) such that:

1) S ⊆id T and
2) P ∼= S.

B. PROBLEM STATEMENT
Our study concentrates on resolving two pivotal problems:
subgraph matching and matching explanation, formally
delineated in Problem 1 and Problem 2, respectively.
Problem 1 (Subgraph Matching): The problem of Sub-

graph Matching involves determining whether a subgraph of
a given target graph T = (VT ,ET , lT ) is isomorphic to a
query pattern P = (VP ,EP , lP ). The input consists of the
target graph T and the query pattern P , both of which are
labeled and connected graphs. The output returns true if there
exists a subgraph S ⊆id T such that S is isomorphic to
P , and false if no such subgraph exists. The objective is to
identify the presence of a subgraph within the target graph
that is structurally identical to the query pattern.
Problem 2 (Matching Explanation): The problem of

Matching Explanation involves finding a precise correspon-
dence between the nodes of a target graph T = (VT ,ET , lT )
and a query pattern P = (VP ,EP , lP ). The input consists
of the target graph T and the query pattern P , both of
which are labeled and connected graphs. The output is a
one-to-one mapping f : VP → VT that defines the node
correspondences. The required constraints ensure that both
graphs are labeled connected graphs, and that there exists
a subgraph S ⊆id T isomorphic to P . The objective is

to determine the mapping f that accurately reflects the
correspondences between the nodes of P and T .

III. RELATED WORKS
Subgraph matching is addressed through two distinct settings
within research communities. This section covers approaches
for non-induced subgraph matching (Section III-A) and
induced subgraph matching (Section III-B). Furthermore,
since we employ a neural-based approach capable of
explaining subgraph matching, we also examine related
techniques for neural subgraph matching and explanation
(Section III-C).

A. NON-INDUCED SUBRAPH MATCHING
The concept of non-induced subgraph matching permits the
pattern graph P to act as a partial embedding within a
subgraph S of the larger target graph T (see Definition 7).
Specifically, this means that while an edge e ∈ ET may
exist in the target graph T , it is not required to have a
mapping in EP . This particular setting holds significant
utility in various aspects of data management, including
tasks like graph indexing, graph similarity search, and graph
retrieval [8]. Recently, there has been a surge of interest
in the community surrounding the support for explainable
subgraph matching, primarily driven by the introduction of
efficient approaches [25]. These developments have garnered
attention for their potential to enhance the interpretability
and applicability of subgraph matching techniques. However,
our current work primarily focuses on exploring induced
subgraph matching, a topic that will be delved into further
in the subsequent section. This approach involves identifying
patterns where all the edges in the pattern must also exist
in the data graph, providing a more rigorous condition for
matching.

B. INDUCED SUBRAPH MATCHING
The induced subgraph matching problem has been proven
NP-complete [26]. Various algorithms [10], [11], [12], [13],
[14], [17] have been proposed to address this challenge,
focusing on generating effective matching orders and design-
ing robust filtering strategies to reduce the number of
candidates in the data graph. For instance, QuickSI [10]
introduces the infrequent-edge-first ordering technique. This
approach arranges the edges of the query graph in ascending
order based on their frequency of appearance in the data
graph. In contrast, GraphQL [17] employs the left-deep-join
ordering strategy, conceptualizing the enumeration procedure
as a joint problem. TurboIso [11] and CFL [12] advocate for
the path-based ordering method, which entails decomposing
the query graph into several paths and ordering them
according to the estimated number of embeddings for each
path. In addition to these ordering strategies, state-of-the-
art algorithms like TurboIso [11], CECI [13], and CFL [12]
adopt a tree-based framework. This framework constructs a
lightweight, tree-structured index to minimize the number of
candidates. Subsequently, it enumerates all matches based on
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this index rather than the original data graph. While these
techniques have undeniably propelled significant progress,
they face performance issues with large-scale graphs.

C. NEURAL SUBGRAPH MATCHING AND EXPLANATION
The initial work [27] attempted to assess the feasibility
of Graph Neural Networks (GNNs) in subgraph match-
ing, which was validated with small-scaled subgraphs.
This underscored the potential superiority of GNNs over
feedforward neural networks. With recent advancements in
GNNs [2], [28], [29], [30], contemporary subgraph matching
techniques [15], [16], [31], [32] have achieved state-of-
the-art results in terms of efficiency. However, a need
remains to explain the one-to-one correspondence between
the graph pattern and the data graph, which hinders its direct
application in downstream tasks like subgraph isomorphism
testing. Recent studies have delved into the interpretability of
GNNs [33], [34], [35], [36], [37] through a model-intrinsic
perspective. They aim to explain which features of the data
graph contribute to the GNN’s performance on specific tasks,
including subgraph matching [34]. However, it is worth
noting that this line of inquiry is separate from our work, and
we need to address this aspect of GNN interpretability in this
article.

One closely related problem to our work is inexact
matching. Despite employing an approximate neural-based
approach, our validated outcomes are computed only when an
exact pattern is matched. These allowable inexact approaches
encompass a range of techniques, such as structural equiva-
lence [38], inexact matching [39], and knowledge graph [40].
This article will not delve into this problem, as we aim to
reserve its consideration for a future study when we extend
our framework to address these issues.

IV. OVERVIEW APPROACH
A. DESIGN PRINCIPLES
xNeuSM benefits from a crucial advantage in terms of
efficiency, thanks to the inherent characteristics of neural
network computation. However, when it comes to effec-
tiveness, it is essential to carefully design the graph neural
network architecture to meet the following three properties,
in addition to the common ones like approximate accuracy
and efficiency:

• (R1) Explainability. Ideally, a subgraph matching
framework should be capable of identifying the pattern’s
presence and providing approximate alignment wit-
nesses. Given that no existing neural-based approaches
offer these characteristics, we prioritize this feature as
the utmost property due to its critical importance in
numerous real-world applications.

• (R2) High-order dependency. Conventional net-
work representations, which implicitly assume the
Markov property (first-order dependency), can swiftly
become constraining. The oversimplification inherent
in first-order networks may disregard scalability,

particularly pattern size. Recent studies have demon-
strated that data from numerous complex systems may
exhibit dependencies as high as fifth-order [19]. As we
strive for a scalable solution in subgraph matching
with explicability, including high-order dependency
representation emerges as an essential design principle.

• (R3) Multi-task with configurability. The model should
demonstrate adaptability to various matching metrics
by fine-tuning its parameters through training. This is
essential because, in certain scenarios, closely matched
patterns [41]—those with a matching score surpassing
a predetermined threshold—hold even greater signifi-
cance than exact matches. Take, for instance, vaccine
development, where a candidate closely matching the
disease-to-be is far more critical than an exact match to
the disease pattern. Such a closely matched candidate
aids in early disease response. Hence, there may arise
situations necessitating an emphasis on configuring the
model to prioritize emergency scenarios that align better
with human intuition [42].

B. THE CHALLENGES
To accomplish these objectives, we must address the ensuing
the following challenges:

• Explainable adaptivity. The neural-based approach for
the subgraph matching problem employs coarse-grained
embeddings of entire graphs to approximate graph-level
similarities (R1). Achieving an explicitly explainable
alignment between nodes necessitates fine-grained
annotations between the two graphs, adding a layer of
supervision to the training process. However, preparing
such training data is highly labor-intensive, resulting in
computationally inefficient procedures.

• High computational complexity with Graph Multi-hop
Attention. Addressing (R2) necessitates the effective
integration of high-order dependencies, a task that is
far from trivial. Elevating the orders of dependency can
impose a computational burden on the model. As a
result, many existing works frequently maintain the
dependency fixed at the second order. Striking a balance
between efficiency and capturing a large receptive field
proves to be a challenging attempt.

• Multi-objective optimization. Previous studies [15],
[27], [32], [43] have employed neural networks to
characterize the similarity function. These networks
operate on graph-level embeddings or sets of node
embeddings. Despite their competitive performance
in approximating similarity and facilitating retrieval
tasks compared to traditional computations, integrating
an extra optimization objective for analyzing node-
to-node mappings between query-target graph pairs
(R3) presents challenges. The development of a neural
model capable of incorporating new objectives like the
aforementioned one poses a significant challenge in
architectural design.
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C. THE APPROACH
We present a comprehensive overview of our xNeuSM frame-
work in Figure 2 and its formal algorithmic flow in
Algorithm 1, delineating three primary stages as follows.
Our architecture design was inspired by a study of predicting
interaction between drug and target protein [44].
Input representation: Departing from previous neural-

based methods [15] that directly learn from separate
adjacency matrices of pattern and target graphs, our
newly devised unified proxy inputs enable the capture of
cross-graph relations (R1). These inputs also bolster the
learning process concurrently. Further elucidation on this
aspect can be found in Section V.
Graph Learnable Multi-hop Attention Networks: Our

novel approach employs a specialized graph neural
network, GLeMA, to extract higher-order dependencies.
GLeMA facilitates the effective representation of inter-
and intra-interactions between pattern and target graphs
by a learnable multi-hop attention mechanism, enabling
simultaneous learning of those interactions. This integration
of high-order dependencies ensures scalability (R2), par-
ticularly with larger patterns. For further details, refer to
Section VI.
Multi-task optimization: In this third stage, we aggre-

gate node embeddings while concurrently addressing two
tasks: subgraph prediction and matching explanation. Both
tasks utilize the features learned in the preceding stage.
Additionally, we introduce a novel objective function aimed
at optimizing both tasks simultaneously (R3). Section VII
presents a detailed exploration of this stage.

Algorithm 1 xNeuSM Framework
Input : Node feature matrix X

Intra-graph adjacency matrix Ain

Cross-graph adjacency matrix Acr

Output: Prediction ŷ
Weighted mapping matrix P

X0
← X

for l in Range(1 . . . LG) do

X̂
l
in← GLeMal(X l−1,Ain)

X̂
l
cr ← GLeMal(X l−1,Acr )

X l
← X̂

l
cr − X̂

l
in

end
(A(1))LG ← ExtractAttnMat(GLeMaLG ,X l−1,Acr )
x0repr ←

1
|VP |

∑
i∈VP x

LG
i , where xLGi ⊂ XLG

for l in Range(1 . . . LFC − 1) do
x lrepr ← δ(W lx l−1repr + bl)

end
ŷ← σ (W yx

LFC−1
repr + by)

P ←
{
pij = 1

2

(
(a(1)ij )

LG + (a(1)ji )
LG
)}

, where

i ∈ VP , j ∈ VT , and (a(1)ij )
LG ∈ (A(1))LG

V. INPUT REPRESENTATION
Initially, the initialization of the model necessitates the
preparation of input data. In the context of the subgraph
isomorphism problem, the input comprises a subgraph
(a pattern) and a larger graph (a target). Sets of nodes and
edges conventionally characterize both patterns and targets.
Toward our problem, we consider the pattern as P =

{VP ,EP , lP } and the target as T = {VT ,ET , lT } where
V ,E are the sets of nodes and edges respectively; l : V → 6

is the labelling function. Subsequently, the formulation of
input for our proposed model is undertaken, encompassing
a collection of node feature vectors denoted as x, the primary
adjacency matrix represented by Ain, and the secondary
adjacency matrix represented by Acr . Each node within the
pattern or target is encoded as a one-hot vector of 2|6|-
dimensions, where |6| = |6P∪6T | stands for themaximum
count of distinct node labels. The former |6| dimensions are
allocated for the pattern, while the remaining dimensions are
designated for the target graph. This partitioning of pattern
and target node features facilitates distinct embeddings for
pattern and target nodes, thereby enhancing the quality of the
mapping performance. Following this, the amalgamation of
all node vectors culminates in forming the collective input
set denoted as X . The adjacency matrix Ain is created by
flagging intra-graph edges, signifying the absence of edges
connecting the pattern and target nodes. Conversely, the Acr

matrix considers a ‘‘virtual’’ edge connecting a pattern node
and a target node in instances where they share identical
labels. The mathematical definitions for X , Ain and Acr are
formally expressed in equations (1), (2), and (3), respectively.

X = {x⃗1, x⃗2, . . . , x⃗|VP |, x⃗|VP |+1, . . . , x⃗|VP |+|VT |}

with x⃗i ∈ R2|6| (1)

Ainij =


1 if there is an indirected edge or

a directed edge that connects j to i
0 otherwise

(2)

Acrij =


Ainij if i, j ∈ P or i, j ∈ T
1 if l(i) = l(j) and i ∈ P and j ∈ T ,

or if l(i) = l(j) and i ∈ T and j ∈ P
0 otherwise

(3)

VI. GRAPH LEARNABLE MULTI-HOP ATTENTION
NETWORKS
In this section, we initially outline the process of extracting
node features in Section VI-A. Following this, we introduce
the workings of Learnable Multi-hop Attention mechanism
at each layer in Section VI-B. Subsequently, we discuss
incorporating multiple Graph Learnable Multi-hop Attention
layers to facilitate learning higher dependencies within the
networks, as presented in Section VI-C.

A. EXTRACTING NODE FEATURES
In this study, we proposed a Graph Learnable Multi-hop
Attention layer denoted as GLeMa(·), which utilizes Graph
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FIGURE 2. Overview of xNeuSM framework.

Attention Networks and Learnable Multi-hop Attention
mechanism. This approach facilitates the acquisition of
holistic structural information of both targets and patterns.
Assuming that we are applying this layer on an abstract graph
G = {V ,E, l}, we present this graph with (X,A) where
X ∈ R|V |×F is the set of node features; F is the number of
features and A is the adjacency matrix. We formally denote
the output of our proposed layer as X̂ = GLeMa(X,A). The
input to our GLeMa layer encompasses a composite of node
features, denoted as X , and an adjacency matrix, denoted
as A, as described in equations (4) and (5), respectively.

X = {x⃗1, x⃗2, . . . , x⃗|V |}, x⃗i ∈ RF (4)

Aij =

{
1 if there is an edge that connects j to i
0 otherwise

(5)

Subsequently, node feature vectors are projected into
embedding space by a linear transformation x⃗ ′i = Whx⃗i,
x⃗ ′i ∈ RF ′ , where Wh ∈ RF ′×F is a learnable weight matrix.
Then, we calculate an attention coefficient for each pair of
nodes by using Luong’s attention [45] as in (6).

eij =

{
δ(x⃗ ′⊤i W ex⃗ ′j) a directed edge j to i,

δ(x⃗ ′⊤i W ex⃗ ′j + x⃗ ′
⊤

j W ex⃗ ′i) an indirected edge j to i,

(6)

where δ is a non-linear activation function and W e ∈

RF ′×F ′ is a learnable matrix. Subsequently, the normalization
process involves subjecting all attention coefficients to the
softmax function, resulting in the creation of the 1-hop
attention matrix denoted as A(1). Within this normalization
procedure, the concept of masked attention is incorporated,
wherein solely the nodes j ∈ Ni are considered for the
normalization operation. Here, Ni represents the set of
neighboring nodes of node i. Furthermore, to rigorously
eliminate the influence of non-neighbor nodes, attention
values normalized between two nodes i and j are replaced

with zeros in instances where no edge is connecting node i
to node j. The mathematical framework for normalizing
attention coefficients is articulated in (7).

A(1)
= {a(1)ij |i, j ∈ (1, |V |)}

a(1)ij = softmaxj(eij)Aij =
exp(eij)∑

n∈Ni
exp(ein)

Aij
(7)

Upon obtaining the 1-hop attention matrix, we derive
the attention diffusion matrix A following the concept of
multi-hop mechanism in GNNs [20]. Formally, the matrix A
is defined in (8).{

(A(1))0 = I

A =
∑∞

k=0
θk (A(1))k where

∑∞

k=0
θk = 1

(8)

In the Equation (11), the parameter θk represents the
attention decay factor, satisfying the condition θk > θk+1 > 0
to ensure a progressive reduction in importance for more
distant nodes. Subsequently, for each node i, weighted
summations are conducted between itself and other nodes
to create a new feature vector for ith node, employing the
multi-hop attention matrix.

Furthermore, the application of multi-head attention [20],
[46] is executed to derive diverse feature representations from
various distinct perspectives. The resultant vectors generated
through multi-head attention are subsequently concatenated
to yield the ultimate refined feature vectors for nodes.
The formulation delineated in (9) elucidates the process of
generating the ultimate output within this layer.

X̂ =

(
Hn

h=1

δ
(
AhX ′

h
))

Wo withWo ∈ RHF ′×F ′ . (9)

In (9), the symbol X̂ represents the collection of resultant
node feature vectors, whereH signifies the count of attention
heads employed in the multi-head attention mechanism. The
term Ah denotes the multi-hop attention matrix associated
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with the hth attention head. Correspondingly, X ′
h designates

the matrix representing projected node features for the hth

attention head, while Wo stands for a matrix of learnable
weights.

B. LEARNABLE MULTI-HOP ATTENTION MECHANISM
The subsequent challenges confronting our research pertain-
ing to (i) the elevated computational intricacies involved in
computing A due to matrix multiplication [47], as well as
(ii) the judicious selection of the suitable values for θk , which
significantly influences the augmentation or attenuation of
the model performance [47].

1) REDUCING MULTI-HOP ATTENTION MATRIX
COMPUTATION COMPLEXITY
In this study, following the methodology outlined in
the previous GMA work [20], we adopt the geometric
distribution to determine θk , wherein we choose θk =

α(1 − α)k , α ∈ (0, 1) represents the teleport probability.
Consequently, an approximation for AX ′ is achieved via the
utilization of equation (10).{

Z(0) = X ′

Z(k) = (1− α)A(1)Z(k−1) + αZ(0), k ∈ (1,K )
(10)

Proposition 1: limK→∞Z(K )
= AX ′

This proposition was proved in [20], demonstrating that
we can reduce the complexity of calculating A to O(K |E|)
message passing operators. Nonetheless,K can be eliminated
by considering K as a constant and K ≪ +∞. Doing so
raises a concern about how well the AX ′ is approximated
by Z (K ). In other words, the concern is selecting the K that
balances the trade-off between approximation error and
computing complexity. The former works [20] suggested
choosing 3 ≤ K ≤ 10 by empirical experiments. In this study,
we provide the theoretical justification for this selection
strategy in Section VIII-A. Consequently, assuming that
A is approximated by A(K ) (equation 11), the complexity of
computing A is reduced to just O(|E|).{

(A(1))0 = I

A ≈ A(K )
= Z(K )X ′−1 (11)

2) LEARNING TELEPORT PROBABILITIES
In graph attention diffusion theory, a critical concept is
the definition of Personalized PageRank (PPR) [48], which
reveals the importance of each node. The original work of
GMA has proved that the attention matrix in GMA can be
viewed as the transition matrix in PPR [20]. However, the
original work used the same teleport probability for all nodes,
which theoretically limits the power of PPR. Therefore, lever-
aging the capabilities of PPR, we propose a novel approach
that involves the customization of teleport probabilities for

individual nodes, denoted as β = {βv}
|V |
v=1. The primary

challenge at hand revolves around selecting appropriate βv
values for each node. To address this challenge, inspired by

Gated Recurrent Units [49], we devise a method wherein the
network autonomously learns the teleport probabilities via
a straightforward linear transformation with Wβ ∈ R2F ′×1.
The equation presented in (12) delineates how β is derived.

β = σ ((X ′
||A(1)X ′)Wβ + b), (12)

where || denotes the concatenation operator, and b represents
the bias term. It is worth noting that employing distinct
teleport probabilities for each node results in modifications
to equation 8. These alterations encompass θkj = βj(1−βj)k ,∑
∞

k=0 θkj = 1 for j ∈ (1,N ), and θkj > 0. Furthermore, they
involve a row-wise multiplication between θk and (A(1))k .
It is important to emphasize that these changes do not
contravene Proposition 1, as established in Section VIII-B.
Additionally, we provide a comprehensive procedure for
computing learnable multi-hop attention in Algorithm 2.

Algorithm 2 Learnable Multi-Hop Attention

Input : 1-hop attention matrix A(1)

Node feature matrix X ′

Number of approximate hops K
Output: Diffused node feature matrix X̂
Z(0)← X ′

β ← σ ((X ′
||A(1)X ′)Wβ + b)

for k in Range(1 . . .K) do
Z(k) = (1− β)A(1)Z(k−1) + βZ(0)

end
X̂ ← Z(K )

C. GRAPH LEARNABLE MULTI-HOP ATTENTION
NETWORKS
When processing input data that comprises a pattern and
a target, denoted as a triple (X,Ain,Acr ), we employ
our proposed GLeMa layer (GLeMa(·)) to extract hidden
features. Specifically, the input is bifurcated into two tuples:
(X,Ain) and (X,Acr ), which are subsequently subjected to
LG iterations of GLeMa layers. The resulting representation
for (X,Ain) captures intra-graph features, whereas the
representation for (X,Acr ) captures inter-graph features.
The node features at the l th layer are computed by

taking the difference between the inter-graph features and
the intra-graph features from the previous (l − 1)th layer.
This learning of disparities between inter-graph and intra-
graph features enhances the signal for verifying subgraph
isomorphism. The formal definition of the Graph Learnable
Multi-hop Attention network architecture is presented in
equation (13).

X0
= X

X̂
l
in = GLeMal(X l−1,Ain), l ∈ (1,LG)

X̂
l
cr = GLeMal(X l−1,Acr ), l ∈ (1,LG)

X l
= X̂

l
cr − X̂

l
in, l ∈ (1,LG)

(13)
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VII. MULTI-TASK OPTIMIZATION
In this section, we introduce the optimization mechanisms
for both the subgraph matching task and the matching
explanation task, discussed in Section VII-A and Sec-
tion VII-B, respectively. Subsequently, we delve into the
optimization objectives for multi-task learning, as outlined in
Section VII-C.

A. SUBGRAPH MATCHING TASK
In the context of subgraph matching, after their extraction
via LG GLeMa layers, the node feature vectors derived
from patterns are aggregated to generate a representation
vector. This representation vector is pivotal in determining the
isomorphism between the input pattern and the target graph,
achieved through a classifier comprising LFC fully connected
layers. The methodology for computing the representation
vector is elucidated in equation (14), while equation (15)
provides the mathematical formulations underpinning the
classifier.

x0repr =
1
|VP |

∑
i∈VP

xLGi (14){
x irepr = δ(W ix i−1repr + bi), i ∈ (1,LFC − 1)
ŷ = σ (W yxLFC−1repr + by)

(15)

In equation (14), we denote x0repr as the representation
vector of the input, and xLGi as the embedding vector of the
ith node after undergoing LG GLeMa layers. In equation (15),
we represent x irepr as the output vector of the ith fully-
connected layer, with W i and bi signifying the respective
learnable weight matrix and bias parameters.

B. MATCHING EXPLANATION TASK
Leveraging the efficacy of the multi-hop attention mech-
anism, our proposed model can predict the mapping of a
pattern within a target graph. The enigmatic aspect of our
approach entails filtering pairs of (pattern node, target node)
based on the 1-hop attention coefficients obtained from the
final inter-graph GLeMa layer, subject to a predetermined
threshold. Assuming that a threshold-compliant pair signifies
a valid mapping between a pattern node and a target node,
our model can enumerate all potential mappings, irrespective
of whether the input pattern is isomorphic to the target
or not. The precise computational details of this matching
task are expounded upon in (16). In equation (16), M is
the set of mapping nodes between the pattern and target
graph; pij which is computed by average of 1-hop attention
coefficients ((a(1)ij )

LG , (a(1)ji )
LG ) is the mapping probability

between pattern ith node and target jth node.

M = {(i, j, pij)|pij ≥ ϵ},where i ∈ VP , j ∈ VT and

pij =
1
2

(
(a(1)ij )

LG + (a(1)ji )
LG
)

(16)

C. MULTI-TASK LEARNING OPTIMIZATION
In order to optimize our proposed models for the dual tasks of
subgraph matching and matching explanation, we introduce

a composite loss function consisting of two fundamental
components. The first component, denoted as Lsm, is a
binary cross-entropy loss designed to accurately assess the
model’s capacity to predict subgraph isomorphism. The
second component, Lme, is an attention-based loss aimed at
reinforcing the attention coefficients between nodes i and j
(i ∈ VP , j ∈ VT ) that correspond to actual mappings,
while simultaneously diminishing the coefficients for node
pairs sharing the same label (represented as m ∈ VP , n ∈
VT , l(m) = l(n)) but lacking a mapping relationship.

Our overarching objective function, as expressed in
equation (17), as shown at the bottom of the next page,
comprises a combination of Lsm and λLme, where N is
the total training samples and the weight λ serves as a
hyperparameter for regulating the relative importance of the
two loss components.

VIII. THEORETICAL JUSTIFICATIONS
A. MULTI-HOP ATTENTION APPROXIMATION ERROR
In this section, we will justify the multi-hop attention
approximation error and provide guidance on choosing the
appropriate number of approximate hops K . Specifically,
let A denote the exact attention diffusion matrix defined in
Equation (8). By Proposition 1, we can derive:

lim
K→∞

Z(K )(X ′)−1 = A. (18)

Let A(K )
= Z(K )(X ′)−1 be the approximated attention

diffusion matrix at K -hop. We will show that the error
Err(A − A(K )) ≤ (1 − α)K+1, where α is the teleport
probability and K is the number of hops.
Firstly, we decompose Z(K ) as follows:

Z(K )
= (1− α)K (A(1))KX ′

+ α(1− α)K−1(A(1))K−1X ′

+ · · · + α(1− α)(A(1))X ′
+ αX ′ (19)

Then, we obtain:

Z(K )(X ′)−1 = (1− α)K (A(1))K + α(1− α)K−1(A(1))K−1

+ · · · + α(1− α)(A(1))+ α

= (1− α)K (A(1))K +
K−1∑
k=0

α(1− α)k (A(1))k

(20)

Now, let us consider the difference between the attention
diffusion matrix A and its approximation A(K ).

A−A(K )
= A− Z(K )(X ′)−1

=

∞∑
k=0

α(1− α)k (A(1))k − (1− α)K (A(1))K

−

K−1∑
k=0

α(1− α)k (A(1))k

=

∞∑
k=K

α(1− α)k (A(1))k − (1− α)K (A(1))K
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≤

∞∑
k=K

α(1− α)k (A(1))k − α(1− α)K (A(1))K

as α, a(1)ij ∈ (0, 1)

≤

∞∑
k=K+1

α(1− α)k (A(1))k (21)

We also have a(1)ij ∈ (0, 1) so that:

(A(1))k ≤ (A(1))k−1. (22)

As a consequence, we have:

(A(1))k ≤ A(1),∀k ≥ 1 (23)

Using (23), equation (21) can be derived as follows:

E = A−A(K )
≤

 ∞∑
k=K+1

α(1− α)k

A(1) (24)

It is easy to observe thatE ∈ R|V |×|V |. Then, we can compute
the average difference between the exact and approximate
attention diffusion matrix as below:

Err(A−A(K )) =
1
|V |2

∑
i,j

Eij

≤
1
|V |2

∑
i,j

 ∞∑
k=K+1

α(1− α)k

 a(1)ij


≤

∞∑
k=K+1

α(1− α)k as a(1)ij ∈ (0, 1)

≤ α

∞∑
k=K+1

(1− α)k ≤ α
(1− α)K+1

1− (1− α)

≤ (1− α)K+1 (25)

It is readily apparent that when the error is constrained by
the condition Err(A − A(K )) ≤ (1 − α)K+1, selecting K
from the set {3, . . . , 10} yields errors that are consistently
below the threshold of 0.3 for values of α greater than or
equal to 0.3. To further illustrate this observation, we have
presented a graphical representation of the error as a function
of K in Figure 3. Additionally, as K →∞, limK→∞ Err(A−
A(K )) ≤ limK→∞(1 − α)K+1 = 0, which further proves the
approximation’s accuracy.

FIGURE 3. Maximal approximation error of each attention coefficient.

B. CORRECTNESS OF SEPARATED TELEPORT
PROBABILITY FOR EACH NODE
This section establishes the validity of employing distinct
teleport probability, denoted as βv ∈ (0, 1) for each node
v ∈ V , without violating Proposition 1. This variation in
teleport probabilities results in varying attention decay factors
for each node v ∈ V , denoted as ηv ∈ R. Specifically, with k
representing the number of hops, we have:

(ηv)k = βv(1− βv)k > 0. (26)

This leads to the important property:

∀v ∈ V ,

∞∑
k=0

(ηv)k =
∞∑
k=0

βv(1− βv)k =
βv

1− (1− βv)
= 1.

(27)

Let ηk = {(ηv)k}
|V |
v=1 be the attention decay vector at the

k-th hop. With the property in (27), we can generalize
equation (8) as follows:{

(A(1))0 = I

Aη =

∑∞

k=0
ηk (A(1))k .

(28)

In the case where βi = βj,∀i, j ∈ (1, |V |), Aη is equivalent
to A. Let β = {βv}

|V |
v=1 be the teleport probability vector.

Using the same technique as in Section VI-B, we can
approximate AηX ′ with Z(k)β as follows:{

Z(0)β = X ′

Z(k)β = (1⃗− β)A(1)Z(k−1)β + βZ(0)β , k = (1,K )
(29)

To ensure the approximation is correct, we need to prove that
as K →+∞, Z(k)β approximates AηX ′.

Proposition 2: limK→∞ Z(K )
β = AηX ′.


Lsm = −

1
N

∑N

k=1
yk · log(̂yk )+ (1− yk ) · log(1− ŷk )

Lme =
1
N

∑N

k=1

∑
exp

(
−

(
a(1)(LG)ij

)
k

)
∑

exp
(
−

(
a(1)(LG)mn

)
k

)
−
∑

exp
(
−

(
a(1)(LG)ij

)
k

)
+ 1

L = Lsm + λLme

(17)
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Proof of Proposition 2: Firstly, we decompose all elements
of Z(K )

β :

Z(K )
β = (1⃗− β)A(1) . . .︸ ︷︷ ︸

K times

X ′
+ (1⃗− β)A(1) . . .︸ ︷︷ ︸

K−1 times

βX ′

+ (1⃗− β)A(1) . . .︸ ︷︷ ︸
K−2 times

βX ′
+ · · · + (1⃗− β)A(1)βX ′

+ βX ′ (30)

We also have:

AηX ′
=

(
∞∑
k=0

ηk (A(1))k
)
X ′

= η0X ′
+ η1A(1)X ′

+ η2(A(1))2X ′
+ . . .

= βX ′
+ β(1⃗− β)A(1)X ′

+ β(1⃗− β)2(A(1))2X ′
+ . . . (31)

To prove Proposition 2, we need to prove the following
Lemma 1 and Lemma 2.
Lemma 1: (1⃗− β)A(1) . . .︸ ︷︷ ︸

k times

βX ′
= β(1⃗− β)k (A(1))kX ′

Proof of Lemma 1: By the commutative property of
row-wise multiplication between a vector and a matrix,
we can write:

(1⃗− β)A(1)
= A(1)(1⃗− β). (32)

This leads to:

(1⃗− β)A(1) . . .︸ ︷︷ ︸
k times

βX ′
= ((1⃗− β) . . .︸ ︷︷ ︸

k times

)(A(1) . . .︸ ︷︷ ︸
k times

)βX ′

= (1⃗− β)k (A(1))kβX ′

= β(1⃗− β)k (A(1))kX ′. (33)

Thus, Lemma 1 has been demonstrated. □
Lemma 2: limk→∞ (1⃗− β)A(1) . . .︸ ︷︷ ︸

k times

X ′
= O

Proof of Lemma 2: Because βv ∈ (0, 1), it follows that (1−
βv) ∈ (0, 1). This implies that:

lim
k→∞

(1− βv)k = 0. (34)

With β = {βv}
|V |
v=1, we can derive that

lim
k→∞

(1⃗− β)k = { lim
k→∞

(1− βv)k}
|V |
v=1 = 0⃗. (35)

With Lemma 1 and (35), we can conclude:

lim
k→∞

(1⃗− β)A(1) . . .︸ ︷︷ ︸
k times

X ′
= lim

k→∞
(1⃗− β)k (A(1))kX ′

= ( lim
k→∞

(1⃗− β)k )( lim
k→∞

(A(1))kX ′)

= 0⃗( lim
k→∞

(A(1))kX ′)

= O. (36)

Thus, Lemma 2 is proven. □

By proving Lemma 1 and Lemma 2, we can prove
Proposition 2 as follows:

lim
K→∞

Z(K )
β

= lim
K→∞

[
(1⃗− β)A(1) . . .︸ ︷︷ ︸

K times

X ′
]

+ lim
K→∞

[
(1⃗− β)A(1) . . .︸ ︷︷ ︸

K−1 times

βX ′

+ · · · + (1⃗− β)A(1)βX ′
+ βX ′

]
= O+ lim

K→∞

[
β(1⃗− β)K−1(A(1))K−1X ′

+ . . .

+ β(1⃗− β)A(1)X ′
+ βX ′

]
= lim

K→∞

[
ηK−1(A(1))K−1X ′

+ · · · + η1A(1)X ′
+ η0X ′

]
= lim

K→∞

[(K−1∑
k=0

ηk (A(1))k
)]

X ′

= AηX ′ as Aη =

∞∑
k=0

ηk (A(1))k in (28). (37)

Thus, Proposition 2 is proven. □

IX. EXPERIMENTS
In this section, we provide comprehensive evaluation pro-
tocols designed for xNeuSM. Subsequently, we conduct
rigorous experiments using six real-world datasets to assess
the performance of xNeuSM. The primary objective is to
address the following research questions (RQs) through
systematic experiments:
• RQ1: Does xNeuSM exhibit superior performance
compared to diverse baseline techniques in the subgraph
matching task?

• RQ2: How confident are the predictions made by
xNeuSM?

• RQ3: What impact do variations in pattern size and
density have on the performance of xNeuSM?

• RQ4: How effectively does xNeuSM perform in the
matching explanation task?

• RQ5: What is the individual contribution and impact of
each component of xNeuSM?

• RQ6: Can xNeuSM effectively handle inductive set-
tings, adapting to new, previously unseen graphs?

• RQ7: Does xNeuSM retain its effectiveness when deal-
ing with directed subgraph matching and explanation
scenarios?

Each research question is carefully designed to delve
into specific aspects of xNeuSM’s performance, scalability,
interpretability, and adaptability across varying conditions
and settings, providing a nuanced understanding of its
capabilities and limitations. The experiments conducted aim
to provide robust empirical evidence in addressing the
above research inquiries, proving the effectiveness of our
framework in reality.
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A. EXPERIMENTAL SETUP
In this subsection, a detailed exposition of our experimental
framework is presented, encompassing the selection of
datasets, baseline methods, data pre-processing method-
ologies, and the evaluation metrics employed. This com-
prehensive account aims to elucidate the specifics of our
experimental setup, ensuring transparency and replicability
while providing clarity on the foundational elements shaping
our assessment methodology.

1) DATASETS
We assess the performance of our framework across a
diverse range of real datasets encompassing various domains,
including bioinformatics, chemistry, computer vision and
social networks. To evaluate the effectiveness of xNeuSM,
we conduct experiments on six well-established real-world
datasets frequently employed in various applications [50]
within graph mining research. The statistics for these datasets
are summarized in Table 2. In this table, |VT |, |ET |, deg,
and |D| represent the average number of nodes, the average
number of edges, the average degree of a node, and the
number of graphs in the dataset, respectively.

2) BASELINE TECHNIQUES
We provide details of our baseline methods, including state-
of-the-art exact and approximate approaches as follows.
Exact approach: We utilize seven distinct approaches as

below.

• VF3 [51] is an extension of the VF2 algorithm [52]
designed to handle larger graphs. It employs an
enhanced bit vector representation for graph states,
introduces a novel matching order for query nodes,
and incorporates various heuristics like degree-based
filtering and dynamic node reordering to enhance
matching efficiency.

• TurboISO [11] is an efficient subgraph isomorphism
algorithm that utilizes pre-processing, constructing an
index for rapid candidate subgraph filtering. It employs
a divide-and-conquer strategy along with heuristics
such as degree-based filtering and forward checking to
narrow down the search space.

• CFL [12] minimizes redundant Cartesian products in
the search space by strategically postponing them based
on query structure. It introduces a compact path-based
auxiliary data structure for efficient matching.

• CECI [13] partitions the target graph into multiple
clusters for parallel processing and uses BFS-based
filtering, reverse-BFS-based refinement, and set inter-
section techniques to optimize the search process.

• QuickSI [10] employs QI-Sequence to constrain the
search space, determining order based on feature
frequencies. It introduces Swift-Index, reducing costs in
the filtering phase.

• DAF [14] introduces concepts like dynamic program-
ming between a directed acyclic graph (DAG) query and

a data graph, adaptive matching order with DAG order-
ing, and pruning by failing sets to address limitations of
existing algorithms.

• GraphQL [17] introduces a specialized query language
for graph databases, extending formal languages from
strings to graphs. It uses neighborhood subgraphs and
profiles to optimize the search order and reduce the
search space.

TABLE 2. Statistics of real datasets.

Approximate approach: Our comparison includes
• NeuralMatch [15], a cutting-edge subgraph matching
algorithm employing a specialized graph neural network
architecture. This approach efficiently identifies the
neighborhood within a large target graph that encom-
passes a smaller query graph as a subgraph. Through
a GNN, it acquires robust graph embeddings in an
ordered space, encapsulating structural properties like
transitivity, antisymmetry, and non-trivial intersections.
As a result, NeuralMatch achieves real-time approxi-
mate subgraph matching at an unprecedented scale.

• DualMP [16], one of state-of-the-art approaches for per-
forming subgraph counting and matching. This method
leverages Dual Message Passing Neural Networks
(DMPNNs) to learn both node and edge representations
simultaneously in an aligned space through an efficient
asynchronous update mechanism. This helps captur-
ing comprehensive graph structure information. The
method naturally extends to heterogeneous multi-graphs
and shows strong performance across multiple tasks,
including subgraph isomorphism counting, matching,
and unsupervised node classification. It also incorporate
multi-task learning which allows for mutual supervision
between tasks, improving overall performance.

3) DATA PREPARATION
In our experimental setup, distinct training and testing
datasets are utilized. The testing dataset comprises real-world
instances, while the training dataset is artificially synthesized
to mirror the size and degree distribution of the respective
testing dataset.

For each graph in the testing dataset D, we generate
2000 queries, half of which are isomorphic to the graphs
and vice versa. The sizes of the query graphs vary from 2
to the size of the data graph, adhering to a Uniform
distribution. The average degrees of the queries follow a
Normal distributionN (deg, σ 2

D(deg)). Corresponding to each
real dataset, we create a synthetic training dataset that
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replicates the graph size and degree distribution. We adopt
an identical process to generate 2000 queries for each target
graph, akin to the procedure employed in the testing set. The
number of target graphs in these synthetic training datasets is
four times greater than in the real datasets.

4) METRICS
a: SUBGRAPH MATCHING TASK
In this task, we conduct a comparative analysis of our
proposed approach by evaluating it against exact methods
and approximate methods using various metrics to assess
its runtime and performance comprehensively. The metrics
utilized in this evaluation are as follows:

• Execution time: This metric denotes the average pro-
cessing time for a query (target graph, query pattern),
excluding disk loading time.

• ROC AUC: The ROC curve illustrates model perfor-
mance by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various thresholds.
The AUC quantifies overall performance based on the
curve’s area, ranging from 0 to 1. Higher values denote
better performance.

• PR AUC: This metric uses Precision-Recall curves,
emphasizing Precision and Recall rates over TPR
and FPR. It quantifies the area under the Precision-
Recall curve, providing a more accurate assessment of
imbalanced datasets. Higher PR AUC values indicate
better performance.

• F1 score: The F1 score, a harmonic mean of Precision
and Recall, offers a balanced evaluation of the model’s
performance. Precision measures accuracy in identify-
ing positive instances, while Recall assesses the ability
to capture all actual positives.

b: MATCHING EXPLANATION TASK
To demonstrate the efficacy of identifying mappings of
isomorphic subgraphs, we extract the attention matrix from
the last GLeMA layer in the branch that incorporates cross-
graph connections. Subsequently, we rank the mappings of
each query node within the transaction according to their
respective attention scores.We then employ the following two
metrics for evaluation:

• Average Top-K Accuracy: Assuming that accKi rep-
resents the Top-K accuracy of node i in the query,
we compute the average Top-K accuracy across all
testing samples using the following equation.

TopK =
1
|Dtest |

∑
(T ,P)∈Dtest

 1
|VP |

∑
i∈VP

AccKi


• Mean Reciprocal Rank: This metric assesses the model’s
capability to predict the correct mapping with a high
probability. It is computed by taking the multiplicative
inverse of the rank of the first correct mapping. Let
ranki represent the ranking of the correct mapping for

query node i. The average reciprocal ranking across test
samples can be calculated as follows.

MRR =
1
|Dtest |

∑
(T ,P)∈Dtest

 1
|VP |

∑
i∈VP

1
ranki


5) REPRODUCIBILITY
All experiments were conducted on a machine equipped with
a 32-core CPU, 128GB of RAM, and an NVIDIA 2080Ti
GPU with 12GB of memory. Our implementation can be
found at https://github.com/martinakaduc/xNeuSM.

6) HYPERPARAMETER SETTINGS
To support the community to reproduce xNeuSM, we provide
our hyperparameter settings for training our xNeuSM model
in Table 3.

TABLE 3. Hyperparameter settings for our xNeuSM model.

B. SUBGRAPH MATCHING
To address the first research question (RQ1), we conduct a
comprehensive evaluation of xNeuSM’s performance in an
end-to-end manner, with a specific focus on several critical
aspects: (i) execution time and (ii) performance in subgraph
matching tasks, assessed through four distinct metrics which
are ROC AUC, PR AUC, F1 score, and accuracy.
Execution Time across real datasets: We present the

runtime of all methods in Figure 4. The results unequivocally
demonstrate that our proposed solution, xNeuSM, has the
shortest execution time compared to all state-of-the-art
exact and approximate methods. This underscores xNeuSM’s
superior scalability, enabling it to process larger graphs
effectively.

To perform a deeper analysis, we examine the time
complexity of these methods. Let us consider the target
graph as T = (VT ,ET , lT ) and the query pattern as
P = (VP ,EP , lP ). Our approach represents the pair of the
query pattern and target graph as a combined graph G with
VG = VT ∪ VP and EG = ET ∪ EP ∪ Evirt , where Evirt
denotes the set of cross-graph virtual edges. In each GLeMa
layer, the computation of attention coefficients requires
O(H · EG) operations, and aggregating the features from
neighboring nodes requires O(K · H · VG) operations, where
H is the number of attention heads and K is the number
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of hops. Consequently, our approach has a complexity of
O(2LGH (EG + K · VG)). Given that LG and H are fixed,
the complexity of our method is approximated by O(|ET | +
|EP | + |Evirt | + K · |VT | + K · |VP |).

The complexity of the NeuralMatch method is demon-
strated to be O(LG(|ET | + |EP |) + |VT | × |VP |) [15].
With a fixed number of GNN layers, the complexity can
be approximated as O(|ET | + |EP | + |VT | × |VP |). The
component of NeuralMatch that incurs the largest cost of
O(|VT |×|VP |) is the matching process required to determine
whether the subgraph is isomorphic. Consequently, this
imposes a limitation on its applicability to large target or
query graphs.

DualMP has utilized DMPNNs, which are proven to have
a complexity of O(LG(|E| + |V |)). This method combines
the target and query graph together before passing them
into DMPNNs. Thus, the overall complexity of it can be
rewritten as O(LG(|ET | + |EP | + |VT | + |VP |)), and with
a fixed number of DMPNN layers, we can observe the final
complexity as O(|ET | + |EP | + |VT | + |VP |). This is one of
the lowest complexities of a neural-based method for solving
the subgraph matching problem.

In comparison, the best exact baseline (GraphQL) has
a time complexity of O(|VT | × |EP |) + |VT | × |VP |
for the simplest pattern. Additionally, other exact methods,
including QuickSI and TurboISO, exhibit exponential time
complexity for completing the matching process [10], [11].
From the above analysis, we can conclude that our approach
exhibits one of the lowest time complexities, resulting
in faster runtimes compared to almost other methods.
Although DualMP has a lower theoretical time complexity,
it demonstrates a higher runtime than our approach. This
discrepancy arises because DMPNN layers must update edge
features, which is more time-consuming than solely updating
node features. However, due to the advantage of having the
lowest time complexity, the runtime of DualMP increases the
least when the query graph size grows (Figure 7).
Performance across real datasets: We showcase the

benchmarking results of our xNeuSM and approximate
approach in Figure 5. The outcomes unequivocally affirm
that our approach achieves performance levels nearly on
par with exact methods while surpassing the current SOTA
performance of the approximate method across all tested real
datasets. This underscores the versatility of our approach,
making it applicable in diverse real-world scenarios such as
pattern matching in social networks, identifying compounds
with specific functions, and beyond.

C. CONFIDENCE ANALYSIS
In this section, we assess themodel confidence in its predicted
outputs to answer the RQ2. We demonstrate that our model
maintains high-performance levels by elevating the output
probability threshold for the subgraphmatching task. Figure 6
depicts the relationship between confidence threshold and
model performance. With a confidence threshold of 0.9, our
model attains over 90% across all metrics in the testing

datasets. This suggests that our xNeuSM exhibits robust
confidence in its predictions.

D. SCALABILITY
To assess the scalability of xNeuSM and address research
question RQ3, we evaluated the performance of all tech-
niques using various real datasets with different levels of
graph density, ranging from sparse to dense graphs.

• VaryD(P):We divided queries into two subsets based on
their average degree. The first subset, labelled ‘‘dense’’,
included queries with a degree of three or higher. The
second subset, labelled ‘‘sparse’’, encompassed queries
with a degree less than 3.

• Vary |VP |: We partitioned the query set into four groups
based on query size thresholds: |VP | ≤ 20, 20 < |VP | ≤
40, 40 < |VP | ≤ 60, and 60 < |VP |.

We present our results in Figure 7, with runtime repre-
sented on a logarithmic scale. These results show that exact
methods experience a significant increase in runtime when
the number of query nodes is augmented. Specific methods,
such as CECI or CFL, exhibit high sensitivity to the number
of query nodes. In contrast, despite experiencing increased
time requirements, our methods demonstrate relatively small
increments due to the parallelizability of all operations using
GPU. Consequently, our method proves to be more efficient
in large-scale settings.

E. MATCHING EXPLANATION
Quantitative analysis: We conducted experiments on the
matching explanation task to address RQ4. It is important
to note that this task exclusively applies to known iso-
morphism pairs of (pattern, target). Non-isomorphic cases
were deliberately excluded from our testing as they may not
represent real-world use cases. Subgraph mapping is neces-
sary when the isomorphism is established. Within this task,
we computed the attention scores for all transaction nodes
concerning each query node within the inter-attention branch
of the final GLeMA layer. Subsequently, we organized the
list of corresponding transaction nodes for each query node
based on the computed attention scores. The effectiveness of
subgraph alignment is evaluated and presented in Table 4.
Table 4 illustrates the superior performance of our method

in the subgraph alignment task across diverse datasets,
such as KKI, DHFR, DBLP-v1, and MSRC-21. However,
the task becomes more challenging with large graphs that

TABLE 4. Performance of in subgraph aligning task.
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FIGURE 4. Execution time on subgraph matching task.

FIGURE 5. Performance comparison between neural match and xNeuSM.

have a limited number of node labels, making it difficult
to accurately retrieve subgraph mappings. This complexity
arises from the exponential growth in the potential number of
mappings.
Qualitative analysis: For the qualitative analysis of the

matching explanation task, we have generated visualizations
for two exemplary results derived from the KKI dataset.
Specifically, Figure 8a illustrates an isomorphic case, while
Figure 8b portrays a non-isomorphic case. A numerical
label denotes each node within these figures, and nodes
predicted to be aligned are color-coded uniformly. Our model
demonstrates exceptional performance in the isomorphic
case, accurately predicting all node mappings. Conversely,
the model generates candidate mappings for all potential
subgraphs within the pattern in the non-isomorphic case. For
instance, in Figure 8b, the subgraph 154−54−129−152 can

FIGURE 6. Relation between confidence threshold and model
performance.

be transformed into an isomorphic subgraph of the target
within the pattern by removing the edge 154− 152.

F. ABLATION TESTING
In this section, we conduct an ablation study to better
understand the interactions between the components in
xNeuSM, which is the answer for RQ5. We evaluate the
performance of our proposed framework using the KKI,
COX2, and DBLP-v1 datasets against several variants:

• Model architecture:

– cross-only: This configuration exclusively employs
inter-connections between the graph and subgraph.

– intra-only: This configuration solely relies on
intra-connections within the graph and subgraph.

– both: This configuration combines intra- and
inter-connections of the graph and subgraph.
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FIGURE 7. Runtime scalability analysis on six datasets including: KKI, COX2, COX2_MD, DHFR, DBLP-v1 and MSRC-21.

FIGURE 8. Examples of isomorphism and non-isomorphism cases
resulted from our model in the KKI dataset.

• Attention head: We modify the base xNeuSM with 2
and 4 attention heads. These settings are used to
understand the relationship between increasing model

complexity (by increasing attention heads) and model
performance.

• Multi-hop mechanism:
– 1-hop: Here, we replace the GLeMA layer with a

standard 1-hop GAT layer.
– increasing-hop: This configuration employs the

GLeMA with a continuously increasing number of
hops in the deeper layers (K (LG) = LG).

– interleaved-hop: This configuration uses the
GLeMA with an interleaving-increasing number of
hops. In this study, we use K (LG) = 2LG − 1.

The results in Table 5 provide evidence that our proposed
model architecture strikes a balanced and optimal trade-off
between performance and computational efficiency. These
findings demonstrate that modelling intra-connections is
crucial for achieving outstanding performance. Combining
inter- and intra-connections enhances the model’s ability to
distinguish unaligned nodes, resulting in higher performance
than using intra- or inter-connections in isolation. Addition-
ally, increasing the number of hops enables the model to
effectively capture the global structure of graphs, further
boosting performance. However, a continuous increase in
hops leads to a slowdown in the model. The interleaved-hop
strategy is the most suitable option for maintaining high
performance while reducing computational time.

G. GENERALISATION ANALYSIS
In this section, we conduct experiments to demonstrate the
generalization capabilities of xNeuSM in out-of-distribution
settings and answer to RQ6. In these settings, we utilize the
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TABLE 5. Impact of each model component in xNeuSM.

TABLE 6. ROC AUC of out-distribution settings. For each dataset, the
model trained on a different dataset that achieved the highest ROC AUC
is in [italic].

TABLE 7. Performance of xNeuSM directed subgraph matching and
matching explanation.

model trained on one dataset to test the others with the same
datasets as in the previous experiments. The testing results
are presented in Table 6. Upon examination of Table 6, the
following observations can be made:
• A model trained on a dataset with a large |6| exhibits
generalization to datasets with smaller |6| (trained on
KKI and tested on DHFR, DBLP-v1, MSRC-21).

• A model trained on a dataset with a lower incidence
of duplicated node graphs exhibits poor generalization
to datasets characterized by a higher frequency of
duplicated node graphs (no model trained on other
datasets well generalizes to COX2).

• Furthermore, a model trained on dense graphs can
generalize to datasets with sparser graphs (trained on
MSRC-21 and tested on DHFR, DBLP-v1).

These results collectively demonstrate the strong generaliza-
tion abilities of our model, especially when the model is
trained on sufficiently large datasets.

H. DIRECTED SUBGRAPH MATCHING AND EXPLANATION
To answer the final RQ7, we assessed our xNeuSM using
directed graphs. We utilized the same datasets as those in
previous experiments to accomplish this. We converted all
edges within these datasets into directed edges, designating

the tail node as the one with a smaller label and the head node
as the one with a larger label. Subsequently, we present the
results of our evaluation within the context of both subgraph
matching and matching explanation tasks in Table 7. The
results in Table 7 demonstrate the effectiveness of our
proposed method, even with directed graphs.

X. CONCLUSION
In this study, we proposed a novel framework called
xNeuSM for explainable neural subgraphmatching. xNeuSM
aims to address the limitations of previous neural-based
approaches, which lack interpretability while achieving
superior performance compared to existing approximate and
exact algorithms. We introduced key contributions, including
the Graph Learnable Multi-hop Attention Networks and a
multi-task learning framework to optimize matching and
matching explanation tasks jointly. Theoretical justifica-
tions were provided to analyze the approximation error of
multi-hop attention and prove the correctness of learning
node-specific attention decays.

Extensive experimental evaluations on real-world datasets
demonstrated that xNeuSM achieves substantial improve-
ments over state-of-the-art techniques in both runtime
and accuracy for subgraph matching. Its capability is
further manifested in the precise identification of node
mappings, as evidenced by the matching explanation
results. Further ablation studies validated the effectiveness
of individual components in xNeuSM’s architecture. This
work also explored the generalizability, scalability and
applicability of xNeuSM to directed graphs and inductive
settings. Overall, xNeuSM achieves the dual objectives
of superior performance and interpretability, making it a
practical solution for a wide range of real-world tasks
involving subgraph matching and pattern analysis in large
graphs.

There are several promising directions for future work.
Firstly, xNeuSM can be extended to handle inexact subgraph
matching. Secondly, integrating advanced GNN modules
may further boost xNeuSM’s representation power. Lastly,
applications of xNeuSM to real-world domains like drug
discovery and network alignment could be explored. In sum-
mary, xNeuSM presents a significant step towards building
interpretable and scalable neural solutions for graph-related
problems.
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