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A B S T R A C T

Over the past decades, online social networks such as Twitter and Facebook have become a significant
part of people’s daily lives, particularly amid the ongoing global calamity — the COVID-19 pandemic. This
gives room for social bot attacks that are designed to automatically replicate the behavior of real accounts.
Most of these bots are employed for nefarious purposes such as disseminating false information, artificially
amplifying the popularity of a person or movement, or spreading spam. Many studies have been conducted in
an attempt to discover new strategies for identifying social bot accounts. To deal with large-scale attacks
from social bots, Machine Learning has emerged as a noticeable path of bot detection problem that can
handle massive amounts of data. However, the heterogeneity between studies in terms of problem statements,
proposed processes, datasets, and evaluation metrics makes it difficult to assess and compare the efficiency
of proposed methods. In this paper, we propose a systematic view of supervised learning methodologies for
tweet-based social bot detection, ranging from shallow learning to specific deep learning models. In addition,
we introduce a framework that measures various performance aspects and summarizes the in-depth analysis
of the results, which were obtained using two datasets comprising 26224 labeled Twitter accounts. The results
of this framework, we believe, will be beneficial as a practical guideline for other bot detection research or
applications that require the use of machine learning techniques.
1. Introduction

Online social networks (OSNs) such as Facebook, Twitter, and
Linkedin have become the most popular channels to share news and
opinions, promote products and communicate among people within the
same communities. Twitter, for example, has seen significant growth
from 54 million active users in 2010 to 305 million in 2015 and 330
million as of 2019.1 Another analytical source shows that there are
more than 4.62 billion OSN users around the world in January 2022,
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equating to 58.4 percent of the total global population.2 With such
popularity, OSNs have also been exposed to misuse and vulnerabilities
as Internet websites. Their large user base, easy-to-use functionality,
and open nature further attract anti-social, malicious activities, where
social bots are included.

Social bots are OSN accounts that imitate to be those of a real
human but are fully operated by computer software (Shafahi et al.,
2016-12). It is commonly reported the misuse of social bots to exploit
and manipulate social media discourse with rumors, spam, malware,
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misinformation, slander, or noise (Ferrara et al., 2016). These bots are
usually linked with the fake news generation and pose great threats
to democracy, journalism, and freedom of expression. Social bots can
be used during elections or moments of distinct, and country-specific,
political conversation or crisis to demobilize an opposing party’s fol-
lowers, promote ideas, and attack targets on social media (Woolley,
2016). It is also evident that Twitter bots were used in U.S. presiden-
tial campaign in 2016, influencing discussion and opinions spared in
Twitter meaningful political discussion (Trifiro et al., 2021; Woolley &
Guilbeault, 2017)

During the COVID-19 pandemic, social bot attacks have had a
significant impact on OSN users (Ferrara et al., 2020; Yang, Torres-
Lugo, & Menczer, 2020). The outbreak of the pandemic has resulted
in a significant surge in demand for information, leading to the prolif-
eration of unregulated dissemination of untrustworthy, false, deceptive,
and unconfirmed information (Ferrara et al., 2020). A public report
estimates that nearly half of the Twitter accounts spreading messages
on the OSN about the coronavirus pandemic are likely bots.3

Given the significance of social bots, social bot detection has been an
merging and active research topic for the last ten years (Cresci, 2020).
esearchers have been working on different methods to detect and
lock social bots. Classical approaches to social bot detection include
raph-based (or structured-based) and crowdsourcing. In graph-based

approaches, social network relationships are employed with typical
methods such as trust propagation-based, graph clustering, or making
use of graph metrics and properties. Crowdsourcing refers to manual la-
beling, where human detection is required to distinguish between social
bot accounts and human accounts. These approaches critically suffer
from scalability issues and produce biases (graph-based approaches rely
on the assumption that it is easier to traverse from a social bot account
to another social bot account, crowdsourcing outputs are strictly fol-
lowed the labeling schema from human’s prior knowledge) (Alothali
et al., 2018). In contrast, Machine Learning (ML) approach has been
trongly discussed due to the potential of solving the problem on large
mounts of data with numerous variables. Utilizing machine learning
echniques can facilitate the process of identifying behavioral patterns
ased on the characteristics of user accounts and determine whether
hose accounts are likely occupied by bots or humans. The approach
s believed to acquire faster and better performance compared to both
raph-based and crowdsourcing.

Because of the high number of proposed machine learning detectors
nd their effectiveness, we focus solely on machine learning-based
pproaches for social bot detection in this study. Specifically, we will
iscuss supervised ML approaches where the labeled data is provided
s input. Given a group of accounts to analyze, supervised detectors
ere applied to every account, to which they assigned a binary label

either bot or human). Our contributions are stated as below.

(i) First, we review state-of-the-art supervised learning models for
social bot detection in a detailed perspective.

(ii) Secondly, we introduce a new framework for comparison among
supervised ML models for social bot detection in the last decade.
Our proposed framework is integrated with numerous datasets
and recent methods, and has been implemented in a way that
is convenient for future methods to be adapted into it. We
made this framework publicly available at https://github.com/
dfighter1312/social-bot-bnm-framework.

(iii) Finally, we conducted numerous experiments to evaluate meth-
ods and models from different perspectives, including multiple
metrics, multiple scenarios, and datasets.

3 https://www.npr.org/sections/coronavirus-live-updates/2020/05/20/
59814085/researchers-nearly-half-of-accounts-tweeting-about-coronavirus-
re-likely-bots
2
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The remainder of the paper is organized as follows. Section 2
defines the social bot detection task. Section 3 reviews related methods
using a supervised learning approach for social bot detection, which is
summarized systematically following our proposed taxonomy. Section 4
describes the implementation of our benchmarking framework to com-
pare the detectors. Section 5 lists out available datasets that we used
for evaluating the detectors, along with the experimental results and
outcome analysis. Finally, we conclude our key findings in Section 7.

2. Problem statement

We use the problem definition stated by Feng, Wan, Wang, Li, and
Luo (2021) as a cornerstone, along with some additions and alternatives
from our perspective. We limited the scope of social bots to Twitter, as
this is the most popular platform where social bots are detected.

Let 𝑈 be a public Twitter account with three major categories of
nformation: list of uploaded tweets 𝑇 , list of properties 𝑃 and list
f neighbors 𝑁 . Each tweet includes semantic information of users
𝑠 (i.e., user-generated natural language texts) and the metadata 𝑇𝑚
uch as the number of favorites, retweets, replies, URLs count, hashtags
ount and tweet timestamp. Property information is divided into two
ub-categories: initialization 𝑃𝑖 and activity 𝑃𝑎. Initialization consists of
ll the fields that can be initialized during the creation of the accounts
e.g., username, date of birth, gender, profile picture), while activity
efers to the properties with immediate updates after every account 𝑈 ’s

behavior and/or other accounts affect on account 𝑈 (follow, like, add
friend, etc.). All fields in activity are numeric and initialized with zeros.
Neighborhood information of an account is the list of its followers and
followings, which can form a relationship graph. Note that some all-
time network statistics, such as friend count and follower count are not
classified into set 𝑁 but set 𝑃𝑎. Moreover, to get all the information of
an account 𝑈 , the account status must be set to public. Otherwise, it is
infeasible to perform the detection task since most features are hidden,
leaving null fields in our dataset. Fig. 1 demonstrates how we divide
Twitter user information into different groups.

Why do we need to divide into smaller categories? Existing works on
tweet-based bot detection in the early stages, either using machine
learning, crowd-sourcing, or a structured-based approach, focused on
analyzing traditional bot accounts with bot-like patterns on a feature
set, similar to answering questions using a bot detection algorithm. For
example, from 𝑃𝑖, was the account randomly created to infer it as a
bot? Or if we find a large proportion of bots is under an account’s
neighborhood 𝑁 , can it be more likely to be a bot? However, social bot
evolution has required more generalized methodologies for detecting
bots. While traditional bots or spam bots cost cheaper but perform more
predictable behaviors, sophisticated bots or even AI-powered social
bots that now get a higher level of human imitation (Cresci, 2020).
Dividing available features of a user account enables us to explain the
growth in social bot detection using supervised learning, as well as
support our summary to be more readable and systematic.

In supervised learning, social bot detection is defined as a binary
classification problem, where the ground truth of an account can only
be human (𝑦 = 0) or bot (𝑦 = 1). Therefore, the social bot detection
ask is defined as follows: Given an account 𝑈 and its information 𝑇 ,
𝑃 and 𝑁 , learn a bot detection function 𝑓 : 𝑓 (𝑈 (𝑇 , 𝑃 ,𝑁)) ⟶ �̂�, such
hat �̂� approximates ground truth 𝑦 to maximize prediction accuracy.

. Supervised learning approaches for social bot detection

.1. General pipeline

Early social bot detectors that employed Machine Learning algo-
ithms were built based on a supervised learning approach. According
o Cresci (2020), those detectors have been developed and published
ince 2010. The number of publications throughout the decade is still

ncreasing and dominating other approaches in the machine learning

https://github.com/dfighter1312/social-bot-bnm-framework
https://github.com/dfighter1312/social-bot-bnm-framework
https://github.com/dfighter1312/social-bot-bnm-framework
https://www.npr.org/sections/coronavirus-live-updates/2020/05/20/859814085/researchers-nearly-half-of-accounts-tweeting-about-coronavirus-are-likely-bots
https://www.npr.org/sections/coronavirus-live-updates/2020/05/20/859814085/researchers-nearly-half-of-accounts-tweeting-about-coronavirus-are-likely-bots
https://www.npr.org/sections/coronavirus-live-updates/2020/05/20/859814085/researchers-nearly-half-of-accounts-tweeting-about-coronavirus-are-likely-bots
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Fig. 1. Feature sets under user information.
Fig. 2. The pipeline of supervised learning for social bot detection.
field, i.e., unsupervised, semi-supervised, adversarial, etc. A typical
pipeline of model development for a supervised learning detector is
described in Fig. 2:

• Data Collection & Annotation: a collection of Twitter accounts
retrieved from Twitter API in which each object represents a user.
Labeling tasks must be done by a particular labeling schema.
Apart from crawling and manually annotating the data, using
available datasets can reduce the time spent in this phase.

• Feature Selection: to pinpoint key features for concentrated analy-
sis from the dataset. Selected features at this stage are primarily
driven by the specific focus or assumptions retrieved from related
studies.

• Feature Engineering : Besides transforming text and timestamp into
numeric types so that machine learning algorithms can handle
them, and narrowing down the list of features obtained from the
previous stage after analysis, in Feature Engineering, some new
features can be extracted from our knowledge. Shallow learning
performance heavily depends on this part.

• Semantic Encoding : focuses on converting a user’s tweets, or 𝑇𝑠,
to a scalar or vector using vectorization or word embedding
techniques.

• Classification: to tune the most suitable architecture that maps the
inputs obtained from the last phase into desired outputs.

While Feature Engineering and Semantic Encoding can be employed
or ignored in some works, others are included in the processes of
developing most detectors.

3.2. Technique taxonomy

As shown in Fig. 3, Social Bot Detection Techniques can be divided
into two groups: Shallow Learning Techniques and Deep Learning Tech-
niques. Shallow Learning Techniques refer to typical Machine Learning
algorithms such as Random Forest, Logistic Regression, Naive Bayes,
Support Vector Machine, etc. (Pranckevicius & Marcinkevičius, 2017).
Some approaches also combine with Semantic Encoding, which enhances
semantic information of the tweets into a machine-readable format.
Meanwhile, Deep Learning Techniques approaches rely on Deep Neural
3

Fig. 3. The taxonomy of social bot detection techniques.

Networks to address social bot detection challenges. Based on the
nature of the data, these approaches encompass two primary direc-
tions: Sequence-Based Techniques and Graph-Based Techniques. Gener-
ally, Sequence-Based Techniques treat tweets as sequence data; therefore,
they often utilize some Recurrent Neural Networks (RNN) based models
like Long Short Term Memory (LSTM) to process data. This is because
they are specifically intended for sequence data; some additional meth-
ods also use Convolutional Neural Network (CNN) model to extract
more latent features, thereby enhancing the reliability of the outputs.
On the other hand, Graph-Based Techniques represent the relationship
between tweets and users as a graph and use Graph Neural Network
(GNN) to extract respective features, which can be considered the latest
approach in this field. In the sections that follows, we will discuss
two main branches of current approaches: Shallow Learning and Deep
Learning.
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3.3. Shallow learning techniques

3.3.1. Feature extraction and processing
In Shallow Learning, extracting highly-predictive features may re-

veal interesting patterns that provide an understanding of the difference
between bots and humans (Ferrara et al., 2016). Consequently, besides
using original features that are available in Twitter API as well as in
the datasets, some works derived more features that may be useful to
distinguish between malicious and benign accounts.

Davis et al. (2016) created a web platform, BotorNot, to return
he probability that a Twitter account is controlled by a human or
achine. The system was first released in 2014, and it was the first

ocial bot detection application for Twitter that raised awareness about
he existence of social bots. From user data, the system employed
ver 1000 features, including network, user, friend, temporal, content,
nd sentiment features, with Random Forest as the classifier. It has
een continuously improved, where later versions introduced addi-
ional training data and features to capture more sophisticated behavior
nd comply with changes from the Twitter API (Sayyadiharikandeh
t al., 2020; Varol et al., 2017; Yang et al., 2022, 2019), Other research
howed that with fewer features than BotorNot, the performance can
till be retained (Ferrara et al., 2016) but with less memory and training
ime.

Detectors in Shallow Learning have primarily focused on user prop-
rty 𝑃 . In particular, user activity features 𝑃𝑎 were analyzed and
everaged by 73% of our surveyed papers because such features like
he number of followers, number of friends, protected indicator, etc.,
equire a small effort of data transformation but clearly showed dis-
inguishable patterns between social bots and human activity on social
edia. New features derived from 𝑃 were commonly obtained by (i)

ounting the length of text generated by the account, taking screen
ame, username, and description as examples (ii) extracting the growth
f the accounts in the number of followers, favorites, statuses, etc. by
ividing all-time values by the account’s lifetime, (iii) apply entropy,
hich is used to measure the randomness in a data signal in informa-

ion theory, with the assumption that social bots’ creations and their
ehaviors were more predictable than human.

.3.2. Processing tweets with semantic encoder
There are limited studies processing tweet semantics that adopt

hallow Learning techniques due to two reasons. Firstly, Shallow Learn-
ng detectors were proposed in the early stages of social bot detection,
hen the targets had slightly small functionalities provided. Suspicious
ctions from these bots can be nimbly spotted via user property fea-
ures. For instance, a group of social bots that are generated to follow
ne or several accounts that the botmaster selected will most likely
ave an abnormal account reputation (i.e., following/follower ratio).
imilarly, social bots have a higher number of tweets, but fewer replies
han human accounts (Ferrara et al., 2016) since these rule-based bots
ay not often be included in a conversation. Therefore, user property

eatures were stated to be the most predictive and interpretable feature
et (Ferrara et al., 2016). High accuracy was reported in Shallow
earning detectors that only leveraged this type of feature set.

Secondly, it requires less preprocessing effort because most of them
re numerical or categorical properties, and no composite feature ex-
sts. Second, collecting and storing tweets are challenging for such
esearch since APIs provided by OSNs do have limitations on the
umber of tweets per hour to be retrieved, and one user can make
housands of tweets, retweets, and replies. Not many available datasets
ere released before, including tweets for usage (Feng, Wan, Wang, Li,
Luo, 2021).
A simple transformation from tweets to numerical properties is

aking the length of the tweets or counting the number of special tokens
4

vailable on the corresponding OSN (e.g., URLs, hashtags and user
entions on Twitter). Entropy can be applied across these features to
xtract a feature that represents the randomness of the aforementioned
ounts, which was considered by Alarifi et al. (2016) and Kantepe and
aniz (2017). However, this does not mean that semantic features were
xtracted. To obtain parts of its meaning, tweets, which are textual
ata, must be encoded using a semantic encoder. It is expected to
ook through every existing token within each tweet. For the Shallow
earning technique, semantic encoders transform tweets into vectors.
hese vectors can be directly concatenated with vectors obtained by
xtracting user property features 𝑃 and tweet metadata 𝑇𝑚, or they
an be aggregated into one or many scalars with more expressive
eaning. In cases where the algorithm takes a hybrid approach such

s SentiMetrix (Benamara et al., 2007; Subrahmanian & Reforgiato,
008) or contrast pattern-based analysis (Loyola-González et al., 2019),
t will not follow the above schema but directly get numerical values
epresenting interpretable features (agreement, disagreement, irony,
tc.) from every input tweet.

Some of the semantic encoders are described in Appendix A.

.3.3. Data manipulation
Besides feature engineering, several data manipulation strategies

ere added which results in better performance along with feature en-
ineering and semantic encoding. The intuition of using this method is
ue to data imbalance in most available datasets. For
nstance, Kudugunta and Ferrara (2018) with the aim of balancing the
ataset, applied synthetic minority oversampling technique
SMOTE) (Chawla et al., 2002) as an oversampling technique and
dited Nearest Neighbors (ENN) (Wilson, 1972) as a data enhancement.
ddressing the problem of imbalanced datasets with too few samples of

he minor class (i.e., the class with a smaller number of samples than
he others) for a model to learn, SMOTE was introduced to perform
ata augmentation on the minor class by selecting two samples of that
lass, one sample is selected at random in feature space and the other
ne is selected among 𝑘 nearest candidates to the first sample. Then,
onnect those samples with a line segment and get a new sample at a
oint along that line. Meanwhile, ENN is an undersampling technique
or finding and removing ambiguous and noisy samples. For every
ample 𝑥, the ENN algorithm searches for 𝑘 = 3 nearest neighbors

and performs a simple classification on 𝑥 neighbors’ majority voting.
If it is misclassified, the sample 𝑥 is deleted. It was claimed that the
combination of SMOTE oversampling technique with an undersampling
technique is better than undersampling itself (Chawla et al., 2002).

Echeverría et al. (2018) gathered two datasets, namely botnet and
real-user datasets. For the botnet dataset, the authors utilized a wide
range of bot datasets from earlier studies for its botnet dataset. To be
more precise, they aggregated twenty botnet types, each with various
traits and fingerprints. As a result, a dataset comprising more than
one million bots from different sources with their available tweets
is created. LOBO, which proposed their work, also offers novel-form
testing, in which they train all bot classes aside from the target class in
order to assess the predicted generalization of bot classification from
the seen bot to the target class.

Rodríguez-Ruiz et al. (2020) set up the training set containing
only legitimate Twitter accounts, and construct a one-class classifier
to learn the behavior of such accounts. One-class classification is also
considered as supervised classification and applies to general problems
such as outlier detection and anomaly detection. The classifier is then
expected to detect bots that deviate from human accounts regardless
of the bot type, which gives the capability of detecting new types of
bots. Their experimental results showed that one-class classifiers were
better ranked than binary classifiers in most cases. Moreover, among
five one-class classifiers, Bagging-TPMiner (Medina-Pérez et al., 2017)
was the dominator.
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Table 1
Summary of Shallow Learning methods. In case a work did an experiment on multiple classifiers, only the one with the best
performance is reported.
Reference Feature sets Semantic encoder Best classifier

Chu et al. (2012) 𝑃 , 𝑇 Orthogonal Sparse Bigram Random Forest
Dickerson et al.
(2014)

𝑃 , 𝑇𝑠 , 𝑁 SentiMetrix (Benamara et al.,
2007; Subrahmanian &
Reforgiato, 2008)

Gradient Boosting

Davis et al. (2016) 𝑃 , 𝑇 ,𝑁 Not mentioned Random Forest
Morstatter et al.
(2016)

𝑃 , 𝑇𝑠 BOW representation BoostOR

Alarifi et al. (2016) 𝑃𝑎 , 𝑇𝑚 – Random Forest
Kantepe and Ganiz
(2017)

𝑃 , 𝑇 TF-IDF Gradient Boosted Trees

Erşahin et al. (2017) 𝑃 , 𝑇𝑚 – Naive Bayes
Gilani et al. (2017) 𝑃𝑎 , 𝑇𝑚 – Random Forest
Khaled et al. (2018) 𝑃 – SVM-NN
Kudugunta and
Ferrara (2018)

𝑃𝑎 – Random Forest

Echeverría et al.
(2018)

𝑃 , 𝑇𝑚 – Gradient Boosted Trees

Fazil and Abulaish
(2018)

𝑇𝑚 , 𝑁 – Random Forest

Beskow and Carley
(2019)

𝑃𝑖 – Logistic Regression

Pakaya et al. (2019) 𝑇𝑠 Binary Classification: TF-IDF
Multi-level Classification:
Word2Vec

XGBoost

Pasricha and Hayes
(2019)

𝑇𝑚 – Logistic Regression

Loyola-González
et al. (2019)

𝑇 – Random Forest & AdaBoost

Rodríguez-Ruiz
et al. (2020)

𝑃 – Bagging-TPMiner
(Medina-Pérez et al., 2017)

Yang, Varol, Hui,
and Menczer (2020)

𝑃 – K-Nearest Neighbors

Karpov and
Glazkova (2021)

𝑁 – Logistic Regression
f

i
t
i
t

s
i
s

3.3.4. Discussions
Several classifiers were utilized in Shallow Learning: Logistic Re-

gression, Support Vector Machines for Classification, Random Forests,
AdaBoost, Gradient Boosting, XGBoost, etc. Ensemble methods such as
Random Forests or AdaBoost tend to get the best performance in most
cases.

Shallow learning models are efficient on small training datasets,
which can be concluded from our experiments described in Section 5.
They can also be stated as reliable since the input features were
analyzed to have different distributions between social bot accounts
and legitimate accounts within the collected datasets.

However, the disadvantages of Shallow Learning are listed as fol-
lows.

• Most works and datasets were built on the assumption that the
accounts were independent. In other words, human labeling and
machine learning classifiers were examined in individual accounts
to determine whether an account was a social bot or not. With
better imitation of the new generation of social bots, malicious
accounts become more likely to evade detection (Cresci, 2020).

• Shallow learning performance heavily relies on the quality of
feature engineering which is the most challenging and time-
consuming task and requires a considerable amount of data min-
ing skill and domain expertise. Therefore, the detectors have slow
improvement when new social bot attacks can be launched where
the bots are designed with different characteristics.

Table 1 summarizes related works using Shallow Learning.

.4. Deep learning techniques

The previous discussion shows that Shallow Learning methods
5

chieve considerably good performance when handling a certain amount n
of data. However, it is known that when the volume of data becomes
huge and complex, the accuracy of those approaches suffers from
saturation, i.e., the accuracy cannot be furtherly improved even with
more training data. The recent emerging technique, Deep Learning, can
potentially solve this problem and has been attracting much attention
in the research community. Thus, various approaches using Deep
Learning models for social bot detection have also been reported with
remarkable performance as subsequently discussed.

3.4.1. Sequence-based techniques
LSTM-Based Model. Fig. 4 illustrates the workflow of the system

based on the sequence-based technique. For instance, consider a sce-
nario in which User 1 creates a tweet: ‘‘Next, I’m buying HCMUT to
make assignments easier for students’’. This tweet is then retweeted as
‘‘Check out this tweet from Elon Musk’’ by User 2. The content of this
message can be categorized into two types of information. Firstly, tweet
metadata 𝑇𝑚 captures descriptive properties of the tweet (e.g., retweet
count, reply count). Secondly, the tweet’s content is represented as
tweet semantics 𝑇𝑠. In the sequence-based pipeline, 𝑇𝑠 undergoes the
ollowing processing steps.
Word Embedding.Word Embedding transforms each word in 𝑇𝑠 into

ts corresponding vector 𝑉𝑤. In consequence, a sequence of word vec-
ors 𝑆 = 𝑉𝑤1

, 𝑉𝑤2
,… , 𝑉𝑤𝑛

is acquired. Word2Vec, which is introduced
n Appendix A, is one of the most commonly-used Word Embedding
echniques.
Sequence Modeling. Sequence models are leveraged to deal with

equence 𝑆. As a matter of course, the development of Deep Learn-
ng leads to numerous emergence of sequence models. In particular,
everal models are expressly developed for processing time-series data,

amed Sequence Model. They are principally constructed based on
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Fig. 4. Sequence-based architecture for solving social bot detection.
Fig. 5. Sequence-based enhanced CNN architecture proposed by Cai et al. (2017).
RNN (Tealab, 2018), the widely used Long Short-Term Memory (LSTM).
In the problems of bot detection on social media, the most sophisti-
cated model is Bidirectional LSTM (Bi-LSTM) consisting of two LSTM
sub-models in opposite directions.

Comprehensive insights into the functioning of LSTM are expounded
upon in Appendix B.

CNN-Enhanced Model. The architecture mentioned in Fig. 4 can
be ameliorated by combining with CNN to extract latent features in
multi-tweets as the architecture described in Fig. 5.
6

As discussed earlier in , from words 𝑤1, 𝑤2,… , 𝑤𝑚 in 𝑇𝑠, a sequence
𝑆 of word vectors 𝑉𝑤1

, 𝑉𝑤2
,… , 𝑉𝑤𝑚

is generated. These word vectors
are arranged together to generate a tweet matrix 𝑀𝑇 , which has 𝑛 rows
and 𝑚 columns, in there, 𝑛 is the number of dimensions of word vector
𝑉𝑤𝑖

and 𝑚 is the number of word vectors in the sequence 𝑆.
CNN is one of the most important foundations of Deep Learning.

Thanks to the weight-sharing mechanism, CNNs have a much smaller
number of weights than Artificial Neural Networks (ANNs), thereby
significantly saving computing time and resources.
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The intricate workings of CNNs are elaborated upon in Appendix C.

.4.2. GNN-based techniques
In recent years, Graph Neural Network (GNN) has made a huge

mpact on various aspects in many distinct fields including Computer
cience, Computational Biology, etc. Regarding the social bot detec-
ion problem, the main target is identifying whether a user is a bot
r a human. By utilizing the relationship between users, Feng with
is colleagues built a graph in which nodes are users and edges are
ollowing or follower relations (Feng, Wan, Wang, & Luo, 2021). A
ode corresponding to a user is represented by a 𝐷-dimensional vector
hich is created by concatenating four (𝐷∕4)-dimensional child vectors

espectively as follows (see Fig. 6).

• User description vector (𝑟𝑏): This vector is created by using
RoBERTa model to encode the short biography on the user profile.
Assuming the user’s short biography is 𝑏, then the user-description
vector is calculated by 𝑟𝑏 = 𝜃(𝑾𝐵 ⋅ 𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑏) + 𝑏𝐵) where 𝑾𝐵
and 𝑏𝐵 are learnable weight matrix and bias respectively.

• User tweets vector (𝑟𝑡): At first, each tweet 𝑖 belonging to the user
is presented by its content (semantic) 𝑇𝑠𝑖 and then is encoded in
the same way as user’s short biography. Let 𝑟𝑡𝑖 be the encoded
vector for tweet 𝑖, then 𝑟𝑡𝑖 = 𝜃(𝑾𝑇 ⋅ 𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑇𝑠𝑖) + 𝑏𝑇 ) where
𝑾𝑇 and 𝑏𝑇 are learnable weight matrix and bias respectively.
After that, all the user-tweet vectors are aggregated to form a
representation vector by 𝑟𝑡 = (1∕𝑁) ⊗

∑𝑁
𝑖=1 𝑟𝑡𝑖 where 𝑁 is the

total number of tweets of that user.
• User numerical properties (𝑟𝑛𝑢𝑚𝑝 ): This vector is obtained by per-

forming z-score normalization on each numerical property of the
user. Then, all those features are arranged into a vector and
projected to a (𝐷∕4)-dimensional space by passing through a
fully-connected layer. Considering 𝑓 𝑛𝑢𝑚

𝑖 is the 𝑖th feature among
total 𝐹𝑛𝑢𝑚 numerical ones of the user. Then, the formal equa-
tion for the above transformations can be written as 𝑟𝑛𝑢𝑚𝑝 =
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑾 𝑛𝑢𝑚

𝑝 ⋅ [𝑓 𝑛𝑢𝑚
𝑖 ]𝐹𝑛𝑢𝑚𝑖=1 + 𝑏𝑛𝑢𝑚𝑝 ) where 𝑾 𝑛𝑢𝑚

𝑝 is learnable
weight matrix, 𝑏𝑛𝑢𝑚𝑝 is bias and 𝜎 is a non-linear activation func-
tion.
7

a

• User categorical properties (𝑟𝑐𝑎𝑡𝑝 ): To produce this vector, we
need to encode all categorical features into one-hot vectors, then
concatenate them into a 𝐹𝑐𝑎𝑡-hot vector (𝐹𝑐𝑎𝑡 is the total number
of user’s categorical properties). The fully-connected layer is used
again to transform that vector into the (𝐷∕4)-dimensional space.
Let 𝑓 𝑐𝑎𝑡 be the 𝐹𝑐𝑎𝑡-hot vector, then the user-categorical-property
vector is computed by 𝑟𝑐𝑎𝑡𝑝 = 𝑅𝑒𝐿𝑈 (𝑾 𝑐𝑎𝑡

𝑝 ⋅𝑓 𝑐𝑎𝑡 + 𝑏𝑐𝑎𝑡𝑝 ), where 𝑾 𝑐𝑎𝑡
𝑝

and 𝑏𝑐𝑎𝑡𝑝 are learnable weight matrix and bias respectively.

Let 𝑟𝑖 is the feature vector for 𝑖th user, it is constructed by using
𝑟𝑖 = [𝑟𝑏, 𝑟𝑡, 𝑟𝑛𝑢𝑚𝑝 , 𝑟𝑐𝑎𝑡𝑝 ]𝑖. The following or follower relationships between
users are kept separately as distinct edges. Now, the input data is
completely converted into a graph structure. The initial social bot
detection problem is renovated to the node classification problem,
which is a well-known problem in graph analysis. Thus, various GNN-
based models can be applied to solve this problem. According to
Feng’s study, all node feature vectors (user feature vectors) are first
transformed into a higher representation by a simple linear projection.
Then, the Relational Graph Neural Networks (R-GCNs) (Schlichtkrull
et al., 2018), whose main purpose is to model relation data, are used
to extract hidden features for each user. Specifically, assuming ℎ0𝑖 is
the origin hidden feature vector of 𝑖th node, at the 𝑙th layer in R-GCN,
each node feature vector is formed by summing itself and its neighbors
at (𝑙−1)th layer. Eq. (1) presents the detailed computing formulation.

⎧

⎪

⎨

⎪

⎩

ℎ0𝑖 = 𝑅𝑒𝐿𝑈 (𝑾0𝑟𝑖 + 𝑏0) (a)
ℎ𝑙+1𝑖 =

∑

𝑟∈
∑

𝑗∈ 𝑟
𝑖

1
| 𝑟

𝑖 |
𝑾 (𝑙)

𝑟 ℎ(𝑙)𝑗 +𝑾 (𝑙)
𝑠 ℎ(𝑙)𝑖 (b) (1)

In (1), 𝑾0 and 𝑏0 are learnable weight matrix and bias respectively;
𝑾 (𝑙)

𝑟 and 𝑾 (𝑙)
𝑠 are learnable weight matrices at 𝑙th layer;  is the set

f relations (i.e. following and follower); and  𝑟
𝑖 is the set of 𝑖th node

eighbors with relation 𝑟. Please notice that there are not any activation
unctions applied to each node at R-GCN layer in Feng’s study, which
oses a difference when compared with the original R-GCN.

Next, each vector at the final 𝐿th R-GCN layer is transformed by a
eLU-activated fully-connected layer to obtain the final representation

or each user. Finally, each user-representation vector is passed through

fully-connected layer with softmax activation function to classify
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Fig. 7. The architecture of benchmarking framework.
a

hether it presents for a bot or a human. Eq. (2) demonstrates the
omputing process for predicting in a formal form.
{

ℎ𝑟𝑒𝑝𝑟𝑖 = 𝑅𝑒𝐿𝑈 (𝑾1ℎ𝐿𝑖 + 𝑏1) (a)
𝑦𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑜ℎ

𝑟𝑒𝑝𝑟
𝑖 + 𝑏𝑜) (b)

(2)

In (2), 𝑾1 and 𝑾𝑜 are learnable matrices; 𝑏1 and 𝑏𝑜 are biases; ℎ𝑟𝑒𝑝𝑟𝑖
is the final user-representation vector and 𝑦𝑖 is the output probability
for predicting whether the 𝑖th user is a social bot or not.

.4.3. Discussions
In general, Deep Learning approaches outperform Shallow Learning

nes when handling a large dataset of text-based tweets. This is because
hese sophisticated models can effectively analyze and extract latent
eatures from sequential data. However, these approaches have not
et leveraged the relationships between multiple tweets, as well as
he inter-user relationships on Twitter. These relationships naturally
ntroduce a graph-based representation, leading to the consideration of
raph Neural Networks (GNNs) for social bot detection.

The main drawback of these Deep Learning models is the exhaustive
raining time when using tweet semantic and user neighborhood fea-
ures. In particular, more sophisticated architectures cause a substantial
ncrease in training and inference time, requiring greater infrastructure
o be deployed. Additionally, although the GNN architecture enables
8

arallelization, taking all relationships existing in the Twitter-sphere o
into account may lead to performance overhead. Therefore, this ap-
proach tends to have better generalization but worse scalability in
contrast to traditional machine learning algorithms. This claim can be
clearly inferred from the experimental results, which will be discussed
in the next section.

4. Benchmarking framework

4.1. Framework setup

In order to retrieve a non-discriminatory comparison between social
bot detectors applying supervised learning approaches, we present the
details for our benchmarking framework. The purpose of establishing
the framework is to provide a flexible and powerful tool to support
the implementation of methods as well as the observation of several
evaluation metrics. The framework has been built on top of Python —
a well-known and largely-used programming language specifically in
data science, along with two powerful tools: Pandas and Scikit-learn.
Pandas is an open-source data analysis and manipulation tool. To work
with data in Pandas, every two-dimensional structured data composed
of rows and columns will be converted into a dataframe. Scikit-learn is

tool specialized for applying machine learning techniques with lots

f preprocessing extensions.
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Fig. 7 depicts the architecture of our benchmarking framework.
Our framework has a similar process to our proposed taxonomy and
is divided into three major layers: data retrieval layer, computing layer
and application layer. The data retrieval layer reads the data in Comma-
separated values (CSV) format, transforms the data into dataframes,
splits them into several sets, and passes them to the succeeding layers.
The output of this layer consists of at most 12 dataframes in three
groups: training data, validation data, and test data. Each group con-
tains at most four dataframes: user property dataframe, neighborhood
dataframe, tweet dataframe, and tweet metadata dataframe. The com-
puting layer simulates a pipeline with four processes. Firstly, based on
user-defined configurations, it removes unselected features. Then, a
user-implemented preprocessing function is applied for each type of
dataframe. We provide three optional preprocessing functions for the
user property dataframe, neighborhood dataframe, and tweet metadata
dataframe, along with a semantic encoding function. Before continuing,
a type checker is employed to remove non-numeric features in those
dataframes. Next, the processed dataframes in each group are combined
into one big dataframe. Finally, the dataframes from the three groups
are passed through a user-specified classification function for training
and evaluation. The application layer shows the progress of processing
the data as well as prints out the summarized information, facilitating
test analysis.

The framework is made publicly available.4

4.2. Evaluation measures

There exists a large amount of research evaluating Machine Learn-
ing model and performance metrics that have been ‘‘de facto’’ standards
in software engineering research. Having positive class (class 1) refer
to social bot accounts, while negative class (class 0) designate human
user accounts, we reported the following metrics:

• Accuracy quantifies the number of correct predictions over the
test set.

• Precision is the ratio of correctly predicted positive classes to all
items predicted to be positive.

• Recall is the ratio of correctly predicted positive classes to all
items that are actually positive.

• Matthews correlation coefficient (MCC) measures the quality
of binary classifications. If the predictions return good rates on
true positives, true negatives, false positives and false negatives,
the MCC score will be high and close to 1 (Matthews, 1975).

• Training time shows the time taken to process and fit the data
to the classifier.

• Inference time shows the average time taken to predict the label
for a user in the test set.

To ensure fairness between account-level detectors and tweet-level
detectors, we only support account-level evaluation. After the inference
stage, tweet-level predictions will be converted into account-level pre-
dictions by averaging the predicted scores of all tweets posted by each
account.

5. Experimental results

In this section, we provide general information on social bot detec-
tion datasets that were leveraged in our benchmarking framework, de-
scribe the implementation process with several precautions and present
our outlook on the results.

4 https://github.com/dfighter1312/social-bot-bnm-framework
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Table 2
Summary of applied datasets, from left to right, number of accounts, tweets and avail-
able feature sets: property 𝑃 , tweet semantic 𝑇𝑠, tweet metadata 𝑇𝑚 and neighborhood
𝑁 .

Dataset Accounts Tweets 𝑃 𝑇𝑠 𝑇𝑚 𝑁

Cresci et al. (2017) 14,398 18,179,186 ✓ ✓ ✓

Feng, Wan, Wang,
Li, and Luo (2021)

11,826 1,999,868 ✓ ✓ ✓

5.1. Datasets

There exists around 20 small to medium datasets on social bot
detection,5 most of which were employed on shallow learning models.
In this part, we introduce MIB – the most frequently used dataset and
Twibot-20 – the latest dataset proposed for social bot detection (see
Table 2).

5.1.1. MIB
MIB (Cresci et al., 2017) contains a random sample of genuine

human user accounts on Twitter along with seven other sub-datasets
of bot accounts. The data was collected from various sources over a
period of a few months in 2014 and contains profile information of
14,398 accounts with more than 18 million posts (tweets, retweets, and
replies) in total. The bot accounts in this dataset are broadly catego-
rized into three categories: social spambots, traditional spambots, and
fake followers. The profiles of these social spambot accounts display
detailed information such as profile pictures, biography, location, etc.,
although most of them were found to be either fake or stolen from other
accounts.

5.1.2. Twibot-20
TwiBot-20 (Feng, Wan, Wang, Li, & Luo, 2021) is representative of

the current generation of Twitter bots and genuine users. It is divided
into four domains: politics, business, entertainment and sports and
each user has semantics, property and neighborhood information. It is
obtained by a controlled breadth-first search expanded from different
seed users. TwiBot-20 establishes the largest benchmark of Twitter bot
detection to date. The dataset was divided in a random partition of
7:2:1 on the labeled users to generate the training, validation and
test set. In order to preserve the dense graph structure that follows
relationship forms, they also provide unsupervised users as the support
set of TwiBot-20.

5.2. Implementation

To compare the performance between methodologies, we made our
best effort to fairly re-implement several works on our benchmark-
ing framework. Re-implementations were done using Scikit-learn6 for
machine learning and Tensorflow7 and Pytorch8 for deep learning as
programming libraries. In addition, the following rules were considered
during re-implementation before obtaining final results:

• If the paper did not mention the model configurations, we will use
the default configurations for the classifier applied in program-
ming libraries.

• For the implementations of deep learning models, the training
phase was done on three epochs and in the same device in order
to fairly compare the training time which is a concern in the deep
learning approach.

5 https://botometer.osome.iu.edu/bot-repository/datasets.html
6 https://scikit-learn.org/stable/
7 https://www.tensorflow.org/
8
 https://www.pytorch.org/

https://github.com/dfighter1312/social-bot-bnm-framework
https://botometer.osome.iu.edu/bot-repository/datasets.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://www.pytorch.org/
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Table 3
Experimental results on MIB dataset using our benchmarking framework (SL: Shallow Learning approach, DL: Deep Learning approach, TT (s):
Training time (in seconds), IT (s): Inference time (in seconds)).

Reference Category MIB

Accuracy Precision Recall MCC TT (s) IT (s)

Baseline model SL 0.9897 0.9937 0.9898 0.9781 0.42 0.08
Yang, Varol, Hui,
and Menczer (2020)

SL 0.9865 0.9915 0.9870 0.9713 2.39 0.49

Kudugunta and
Ferrara (2018)

SL 0.9823 0.9908 0.9807 0.9623 0.39 0.05

Pasricha and Hayes
(2019)

SL 0.9170 0.8952 0.9836 0.8232 15.61 8.10

Gilani et al. (2017) SL 0.9869 0.9887 0.9904 0.9719 3.53 3.14
Alarifi et al. (2016) SL 0.9850 0.9886 0.9875 0.9667 38.58 20.97
Kudugunta and
Ferrara (2018)

DL 0.9796 0.9919 0.9756 0.9567 23 324.58 959.39

Wei and Nguyen
(2019)

DL 0.9610 0.9627 0.9694 0.9351 121 188.57 10 275.44

Feng, Wan, Wang,
and Luo (2021)

DL 0.8124 0.5847 0.9794 0.6491 250 512.63 23 471.98
• If the paper employed tweet metadata features, in the Twibot-20
dataset, they will be excluded. If that is the only feature set that
the paper used, the result cannot be obtained.

• If the paper employed network features, in the MIB dataset, the
corresponding model will use the network data collected by us,
since it is not available in this dataset. We are aware that our
retrieved network feature data is not identical to those at the
time the original dataset was ingested, which could affect model
learning.

To effectively evaluate models for real-life usage, we conducted
hree scenarios for benchmarking the selected models. Besides the tra-
itional transductive scenarios, we also set up two additional scenarios
or deeper evaluation including inductive scenarios and mixed-dataset
cenarios. These three scenarios are described as follows.

• Transductive scenario: We performed splitting one dataset into two
subsets of training and testing. The training set is used to train
the model or tuning parameters and the testing set is used to
benchmark the performance of trained models. The results of this
scenario are illustrated in Table 3 (MIB dataset) and Table 4
(Twibot-20 dataset).

• Inductive scenario:We used MIB dataset for training and Twibot-20
for evaluation to observe how recent social bots’ characteristics
changed, which can fool the classifiers trained on the bygone
dataset. Table 5 shows the comparisons between the performance
of different models in this scenario.

• Mixed-dataset scenario: We merged the training and testing set
of each dataset to obtain a combined set. It is expected that
a classifier with good generalizability will induce no or minor
reduction in performance. The performance of models in this
scenario is presented in Table 6.

The models in transductive scenario were trained on a local machine
ith an Intel Core i7 6700HQ, 16 GB of RAM, and a single Nvidia
eforce GTX 960 GPU with 2 GB of memory. The models in other

cenarios were trained using an Intel Core i5 9400F, 32 GB of RAM,
nd a Nvidia Quadro RTX6000 GPU with 24 GB of memory.

We also added a baseline model in the shallow learning approach
hat naively selects all numerical features and ignores the others and
mployed Random Forest as the binary classifier.

.3. Evaluation

In this section, we analyze the characteristics of the methods,
atasets and approaches to the performance behavior.
The evolution of social bots from the datasets. On one hand,

ost detectors did well on the MIB dataset with an average accuracy
10
of about 0.98. On the other hand, since MIB was released in 2017
while the TwiBot-20 dataset was published in 2020, the manipulative
behaviors of social bots became more diverse and complex, which
results in a lower performance of all classifiers in the TwiBot-20 dataset.
TwiBot-20 has become a more challenging dataset compared to other
datasets served for the social bot detection task. Feng, Wan, Wang, Li,
and Luo (2021), moreover, stated that in order to achieve desirable
performance, incorporating such features as semantics and neighbor-
hood must be considered. Note that the detector created by Pasricha
and Hayes (2019) employs some tweet metadata features that indicate
a tweet is a reply, a retweet, or simply a tweet and it cannot be
experimented with in the TwiBot-20 dataset due to the unavailability
of this feature set.

The effects of feature engineering in the shallow learning ap-
proach. Alarifi et al. (2016) and Gilani et al. (2017) focused on dis-
covering newfangled features that may be more effective in conveying
the disjunction between social bot accounts and human accounts. Pas-
richa and Hayes (2019), similarly, employed a lossless compression
algorithm on Digital DNA sequences of users as a feature extraction
technique. Digital DNA was designed to encode the historical tweet
types of an account as a sequence of characters. In the account-level
detection, Kudugunta and Ferrara (2018) worked on a small subset
of 10 original features and emphasized the use of data enhancement
techniques to improve the accuracy. Interestingly, our baseline model
results in an exemplary performance without processing feature extrac-
tion, proving that original features can also have high importance and
should be taken into consideration when building a model. Moreover,
the social bot detector developed by Yang, Varol, Hui, and Menczer
(2020) is statistically the best detector in the shallow learning approach
which ranked second in the MIB dataset and ranked first in the Twibot-
20 dataset. It uses 8 original user property features along with 12
derived features that mostly focus on the growth of the accounts on
some statistics such as statuses count, favorites count, etc. Therefore,
combining original features from the dataset and extracted features in
shallow learning can engender a detector that detects a large proportion
of elementary-level bots.

Performance and scalability trade-off in the deep learning ap-
proach. With the ability to leverage more features and automatically
extract latent features throughout the layers in neural networks, the
deep learning approach potentially obtains better performance in the
Twibot-20 dataset. However, as mentioned in the previous section,
deep learning detectors have to deal with the scalability problem. The
detector built by Wei and Nguyen (2019) uses only tweet semantics
as the input and applies GloVe embeddings and Bidirectional LSTM to
classify the accounts. Their aim is to strike off the need for human-
crafted features and make assumptions about profiles, neighborhoods,
and behaviors of social media accounts. Nevertheless, from our ex-
periments, the model training time is extensively high and it will
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Table 4
Experimental results on Twibot-20 dataset using our benchmarking framework (SL: Shallow Learning approach, DL: Deep Learning approach,
Acc: Accuracy, Pre: Precision, Rec: Recall, TT (s): Training time (in seconds), IT (s): Inference time (in seconds)).

Reference Category TwiBot-20

Acc Pre Rec MCC TT (s) IT (s)

Baseline model SL 0.8022 0.7576 0.9328 0.6140 0.97 0.06
Yang, Varol, Hui,
and Menczer (2020)

SL 0.8183 0.7633 0.9625 0.6536 5.07 0.35

Kudugunta and
Ferrara (2018)

SL 0.6374 0.8601 0.3938 0.3674 0.60 0.03

Gilani et al. (2017) SL 0.7633 0.7466 0.8516 0.5237 2.87 0.38
Alarifi et al. (2016) SL 0.5537 0.5780 0.6484 0.0923 3.21 0.38
Kudugunta and
Ferrara (2018)

DL 0.8166 0.7474 0.9984 0.6686 4756.99 78.34

Wei and Nguyen
(2019)

DL 0.5689 0.5621 0.9188 0.1172 31 204.35 540.29

Feng, Wan, Wang,
and Luo (2021)

DL 0.8445 0.8239 0.9062 0.6882 38 539.17 5525.04
Table 5
Experimental results on MIB dataset for training and Twibot-20 dataset for evaluation using our benchmarking framework (SL: Shallow Learning
approach, DL: Deep Learning approach, TT (s): Training time (in seconds), IT (s): Inference time (in seconds)).

Reference Category MIB for training – TwiBot-20 for evaluation

Accuracy Precision Recall MCC TT (s) IT (s)

Baseline model SL 0.4877 0.7044 0.1389 0.1041 0.18 0.09
Yang, Varol, Hui,
and Menczer (2020)

SL 0.4727 0.6746 0.1035 0.0723 0.96 1.45

Kudugunta and
Ferrara (2018)

SL 0.4781 0.7623 0.0920 0.1108 0.23 0.03

Gilani et al. (2017) SL 0.4592 0.6600 0.0604 0.0480 0.30 0.93
Alarifi et al. (2016) SL 0.4868 0.5628 0.3538 0.0083 1.32 0.60
Kudugunta and
Ferrara (2018)

DL 0.5010 0.8034 0.1383 0.1614 1581.75 144.97

Wei and Nguyen
(2019)

DL 0.4364 0.3455 0.0129 −0.0621 20 006.88 803.57

Feng, Wan, Wang,
and Luo (2021)

DL 0.5298 0.6593 0.3231 0.1261 3302.84 9323.71
Table 6
Experimental results on the mixed dataset using our benchmarking framework (SL: Shallow Learning approach, DL: Deep Learning approach,
TT (s): Training time (in seconds), IT (s): Inference time (in seconds)).

Reference Category Mixed dataset

Accuracy Precision Recall MCC TT (s) IT (s)

Baseline model SL 0.8487 0.7062 0.9198 0.6963 0.74 0.05
Yang, Varol, Hui,
and Menczer (2020)

SL 0.9334 0.8592 0.9524 0.8554 3.49 0.58

Kudugunta and
Ferrara (2018)

SL 0.8467 0.8699 0.6245 0.6410 0.38 0.01

Gilani et al. (2017) SL 0.9117 0.8458 0.8927 0.8029 1.69 0.34
Alarifi et al. (2016) SL 0.5430 0.4040 0.7969 0.2117 2.11 2.39
Kudugunta and
Ferrara (2018)

DL 0.8543 0.7377 0.8698 0.6912 1300.14 515.86

Wei and Nguyen
(2019)

DL 0.7866 0.9728 0.3665 0.5146 12 506.51 3252.00

Feng, Wan, Wang,
and Luo (2021)

DL 0.8861 0.7855 0.8963 0.7541 8915.38 3647.26
be burdensome for hyperparameters tuning. Meanwhile, concatenating
user and tweet metadata features with encoded semantic characteristics
in contextual LSTM with simpler architecture (Kudugunta & Ferrara,
2018) still gives a better classification performance while scaling down
the time spent for training and inference. In conclusion, deep learning
detectors should be aware of model complexity so that they can be de-
ployed and evaluated in real-world situations where instant detections
are required to reduce the manipulation caused by new social bots.

The effects of collecting user relationships to the performance
of Graph Neural Networks. Surprisingly, BotRGCN, which was pro-
osed by Feng, Wan, Wang, and Luo (2021), achieves the best results
n Twibot-20, but the worst in MIB dataset. There exist two possible
xplanations for the drastic reduction in the performance of the model
n the MIB dataset. First, as stated in Section 5.2, network features in
11
this dataset were collected by us, and they are surely dissimilar to those
at the time the original dataset was ingested. Several accounts were
banned and deleted as well, which makes retrieving any information
nonviable. Second, each account information within the Twibot-20
dataset consists of at most 20 relationships, 10 followers, and 10
followings, using a controlled-BFS approach, whereas all acquired rela-
tionships for every user in the remaining dataset, MIB, were included.
In consequence, MIB is not preferable to apply Graph Neural Networks,
and the efficiency of this architecture is required to be proven in more
experiments.

Performance evaluation in inductive setting. Generally, the ex-
periment of all classifiers in this scenario induced a drastically reduc-
tion in accuracy, precision, recall and MCC scores. Therefore, a fixed
model for social bot detection over a long haul is discouraged. Nev-
ertheless, deep learning methods slightly outperform shallow learning
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from the result given by Table 5, with highest accuracy rate at 0.5298.
This shows that modern neural networks architectures have the ability
to inspect social bots whose characteristics did not exist in the training
dataset.

Performance evaluation in mixed-dataset setting. Experimental
esults from this setting is given by Table 6. With painless feature ex-
raction process, the model proposed by Yang, Varol, Hui, and Menczer
2020) produces a relatively higher performance compared to other
ompetitors. Meanwhile, there is no clear statistical difference between
hallow learning and deep learning models due to the previous obser-
ation in the transductive scenario that shallow learning did well in
etecting classical social bots in the MIB dataset, while deep learning
nables to exploit semantic and network features, which were used
o detect more sophisticated bots appear in the Twibot-20 dataset.
ence, a hierarchy-based approach which employs a combination of
istinct shallow and deep learning models can be considered to gain
igh performance and scalability. With this approach, low inference
ime is taken for detecting simple bots, and an understandable duration
s required for correctly determine such sophisticated bots.

.4. Ablation study

We conducted experiments on three aspects in order to investigate
he most optimal components for constructing a deep learning variant
hat produces a solid performance on two aforementioned datasets —
IB and Twibot-20. First and foremost, taking tweet semantics as the

nly input, we compared two types of word embeddings: GloVe and
ord2Vec for word-level embedding, and TF-IDF for document-level

mbedding. Secondly, one of three basic deep learning architectures
as attached to output the likelihood of a tweet posted by a social
ot. These architectures include Multi-layer Perceptron (MLP), Convo-
utional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)

a variant of Recurrent Neural Networks (RNNs). In addition, we
xamined whether the model’s size and complexity made any impact
y configuring the number of layers and units within a layer. Finally,
e appended tweet metadata and user property features to observe the
ffects on model prediction.
The effects of word embedding techniques. In the MIB dataset,

F-IDF gave superior results compared to GloVe and Word2Vec. This
an be clearly explained by the nature of the dataset. While interested
omains in genuine accounts that existed in the MIB dataset were
aried since they were randomly chosen, bot accounts were collected
rom specific events (e.g., an Italian political election, a mobile app pro-
otion, Amazon product-on-sale promotion). Therefore, tweet domains

rom social bot accounts were narrower than from legitimate ones,
esulting in two distinct word clouds, and easier classification on the
ataset but worse generalization in real word cases. On the other hand,
wibot-20 restricted accounts’ interested domains in 4 categories: pol-

tics, business, entertainment, and sports. Consequently, comparisons
f model performance using tweet semantics can be stated as more
onvincing if conducted in this dataset. The experiment results show
hat GloVe and Word2Vec embeddings with LSTM produce a slightly
etter performance than TF-IDF. A considerable side of choosing the
ord embedding technique is tweets’ multilingualism in both datasets.
he proportions of tweets created from non-English speaking countries
re relatively high, giving a large vocabulary collected from all tweets.
n our experiments, TF-IDF and Word2Vec had to be trained, and
loVe was employed as a pre-trained instance from a large number of

weets. With generalized datasets, training a word-level embedding like
ord2Vec or a more complex embedding technique such as RoBERTa
ay overwhelm training time and consume tremendous amounts of
emory (which can be observed by the training time result in the work
roposed by Feng, Wan, Wang, and Luo (2021) in Tables 3 and 4). To
onclude, deciding on a word embedding technique to be used may
epend on the specificity of the dataset. In a domain-specific dataset,
12

ord-level embeddings can be adapted rather than document-level
Table 7
Study on different word embedding using our benchmarking framework.

Encoder Layer type MIB Twibot-20

Accuracy MCC Accuracy MCC

GloVe LSTM 0.9261 0.8513 0.6788 0.3645
Word2Vec LSTM 0.8916 0.7171 0.7185 0.4393
TF-IDF Dense 0.9399 0.8820 0.6508 0.3506

Table 8
Study on different semantic encoder configurations using our benchmarking framework

Layer type Units Layers MIB Twibot-20

Accuracy MCC Accuracy MCC

Dense 32 2 0.6750 0.5078 0.6484 0.3026
Dense 32 3 0.6994 0.5371 0.6560 0.3172
Dense 64 3 0.6850 0.5198 0.6585 0.3225
CNN 32 2 0.5315 0.3346 0.6145 0.2301
CNN 32 3 0.5290 0.3315 0.6162 0.2355
CNN 64 3 0.5222 0.3241 0.6010 0.2033
LSTM 32 2 0.9216 0.8499 0.6771 0.3616
LSTM 32 3 0.9261 0.8513 0.6788 0.3645
LSTM 64 3 0.9313 0.8667 0.6788 0.3645

embeddings to deeply distinguish the way humans and bots compose
tweets. In a dataset that contains tweets in multiple languages, selecting
a pre-trained word-level embedding or a document-level embedding
can acquire better usage (see Table 7).

The effects of semantic encoder configurations. In this part, we
experienced 3 different architectures: MLP, CNN and LSTM for GloVe
embeddings (which returns a sequence of vectors for every processed
tweet). It can be inferred from Table 8, which is an assessment of the
complexity of the model, that LSTM gives the best results, followed
by MLP and CNN ranked last. This can be explained as LSTM being
the most basic yet efficient architecture in natural language processing
tasks. Surprisingly, MLP performed better than CNN, which may come
from the length of short sentences. Moreover, the larger model did not
significantly improve the results in LSTM, while in MLP and CNN, the
most complex model gave worse results than the small models.

The effects of tweet metadata and user property features. Com-
bining additional information does have an influence on decision-
making, which results in an increase to almost absolute in evalua-
tion metrics within the MIB dataset. Both feature sets showed their
potential due to the better performance when combining tweet se-
mantics with either set, and the best one acquired when all were
employed. This statement has also been proved by related works with
shallow-learning approaches, and by several studies using complex
deep-learning methodologies. In our perspective, for a generalized
detector, naively attaching numerical and categorical data from tweet
metadata and user property features only gives room for detecting
simple social bots with weak human imitation such as accounts that
are created to follow only one designated user but forget to make a
change on their display name (keeping as by default name generator).
Adding tweet semantics can also help to check the similarity between
tweet meanings posted by an account, which gives the ability to de-
tect intermediate AI-powered social bots. However, leveraging only
numbers (except IDs) may let advanced bots evade the detection of
social bot detectors, even when Deep Learning models are the great
latent feature extractors. Manually investigating and transforming such
fields containing IDs and timestamps may boost the performance in
the Twibot-20 dataset as well as in real-world cases. Deep Learning re-
searchers can consider some feature extraction techniques from shallow
learning approaches in order to fuse more information as inputs (see
Table 9).

6. Challenges

Data Shift. The experimental results in the inductive scenario indi-

cate that more improvements are required to effectively identify social



Expert Systems With Applications 238 (2024) 122217H.-D. Nguyen et al.

e

r

W
&

Table 9
Study on the feature set effects using our benchmarking framework (𝑇𝑚: tweet metadata
is included, 𝑃 : user property features are included).

Feature sets MIB Twibot-20

𝑇𝑚 𝑃 Accuracy MCC Accuracy MCC

0.9216 0.8499 0.6771 0.3616
✓ 0.9324 0.8686 – –

✓ 0.9846 0.9669 0.7320 0.4665
✓ ✓ 0.9864 0.9708 – –

bots. The only plausible explanation is that data shift occurs frequently
in OSNs. In Twitter, the follower growth rate every month varies from
1% to 7.92%.9 Furthermore, accounts created by former celebrities may
have exceptionally high follower growth rates and other properties. It
is claimed that the fastest account to reach one million followers only
took four hours to achieve this accomplishment.10 Therefore, model
retraining needs to be reviewed in social bot detection applications to
ensure that it can be continuously delivered with high reliability.

Explosive Twitter-sphere. The relationships between users
(i.e., following and followers) as well as tweets (i.e., reply and retweet)
form a Twitter-sphere, which is extensive and poses a challenge for
graph-based methods. Therefore, when creating or leveraging a dataset
with graph information, choosing a strategy to determine useful re-
lationships between accounts, tweets, or account-tweet is highly rec-
ommended to be given great attention in the future. For instance, in
the Twibot-20 dataset (Feng, Wan, Wang, Li, & Luo, 2021), at most
10 followers and 10 followings per user are collected. If a graph-based
model considers vague instances such as inactive accounts or tweets
with a relatively small number of reaches, it would result in zero
improvements but lead to a large performance overhead.

Feature Selection. So far, along with users’ general information,
tweets and their metadata have become a higher concern for recent so-
cial bot detectors. Specifically, Shallow Learning models commonly ex-
tract behavioral signals from tweet metadata, such as how frequently an
account generates tweets, including hashtags, URLs, or user mentions.
In contrast, Deep Learning approaches use tweets from the dataset and
let the hidden layers extract features. However, social bots with the
support of generative and large language models like GPT-3 (Brown
et al., 2020) can evade detectors that heavily rely on tweet semantics.
For this reason, it is possible for deep learning models to come up with
a more hybrid approach. In addition to the current trend of leveraging
network information, temporal information from tweet metadata could
be processed, or other types of media such as images and videos could
be incorporated into a multimodal architecture in future research.

7. Conclusion

This paper presents a thorough evaluation and comparison of social
bot detectors that are created in the supervised learning approach. We
have tried to give the most systematic report on existing works by
dividing user information into subsets and introducing a taxonomy that
reflects the process of building any detectors. We then provided a flex-
ible and extensible benchmarking framework in which new classifiers
or datasets can be easily plugged. From the framework, we have re-
implemented several detectors, evaluated them in a fair manner, and
analyzed characteristics of detectors and datasets on various classifi-
cation performance metrics including accuracy, precision, recall, and
MCC as well as scalability measures such as training and inference time.

Our principal findings are stated as follows:

9 https://locowise.com/blog/twitter-study-follower-growth-and-
ngagement
10 https://www.guinnessworldrecords.com/world-records/fastest-time-to-
each-1-million-followers-on-twitter
13
• Supervised learning methods for social bot detection have been
being a considerable space for researchers to explore. Initially,
the detectors were developed from machine learning algorithms.
Deep learning emerged as a new branch of detecting social bots.
The number of publications in both approaches has simultane-
ously increased over recent years.

• Descriptions of model construction processes are diverse between
studies. Still, they can be generalized in four consecutive steps:
data collection & annotation, feature selection, semantic encoding
& feature engineering, and classification.

• Shallow learning detectors have better scalability and can be
deployed for real-time applications, but their performances are
limited due to the account-independence assumption. While deep
learning approaches overcome this assumption to obtain better
generalization, model complexity prevents these approaches to
provide widely-used products.

Our future directions consist of (i) improving the benchmarking
framework in order to plug in any detectors in various types of learning
such as unsupervised or semi-supervised learning, as well as building
a higher level of abstraction for studies with the desire to use our
framework, and (ii) developing a detector that employs informative
features in a simple deep learning model to balance the performance
and training time trade-off.
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Appendix A. Semantic encoders for social bot detection

In this appendix, we present a detailed analysis of the semantic
encoders employed in related social bot detection frameworks.

• Bag of Words (BOW) representation
Applied by Morstatter et al. (2016), BOW is a representation
of textual data that describes the occurrence of words within
a tweet. It outputs a vector for each tweet with a dimension
equals to the vocabulary size (i.e., the number of distinct words
that occurred in the whole training corpus). For example, given

https://locowise.com/blog/twitter-study-follower-growth-and-engagement
https://locowise.com/blog/twitter-study-follower-growth-and-engagement
https://www.guinnessworldrecords.com/world-records/fastest-time-to-reach-1-million-followers-on-twitter
https://www.guinnessworldrecords.com/world-records/fastest-time-to-reach-1-million-followers-on-twitter
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Fig. A.8. An example of transforming sentences to BOW representation. Sentence (a) ‘‘I am a social bot’’. Sentence (b) ‘‘I am human’’. Sentence (c) ‘‘We love Twitter’’.
Fig. A.9. An illustration of extracting orthogonal sparse bigrams from a sentence.
a corpus with 3 sentences: (a) ‘‘I am a social bot’’, (b) ‘‘I am
human’’, (c) ‘‘We love Twitter’’, we have the vocabulary with
𝑛 words: I, am, a, social, bot, human, we, love, twitter and the
corresponding BOW representations are shown as in Fig. A.8.
𝑛-gram, or ‘‘Bag of 𝑛-gram’’ is a variation of BOW, whereas the
vocabulary contains strings corresponding to sliding a window of
𝑛 words. If we take 𝑛 = 2 with the previous corpus, then the
vocabulary is now: I_am, am_a, a_social, social_bot, am_human,
we_love, love_twitter. 𝑛-gram is experimented by Pakaya et al.
(2019), but it did not give the highest performance. However,
there exists a variant of bigram that was proposed in a social bot
detection paper, Orthogonal Sparse Bigram.

• Orthogonal Sparse Bigram
The transformation was employed by Chu et al. (2012). In Orthog-
onal Sparse Bigram, vocabulary consists of bigrams generated by
sliding the window of size 𝑚 over the text and outputting every
pair of words that includes the first word in the window. Take
the tweet with the content: ‘‘Next I’m buying HCMUT to make
assignment easy for students’’ as an example. If 𝑚 = 6, then 5 six-
word windows are obtained, each of which produces 5 bigrams
to totally acquire the final 25 bigrams as illustrated in Fig. A.9.

• Term frequency-Inverse document frequency (TF-IDF)
TF-IDF employs the frequency of terms (words) to determine how
relevant and vital those words are to a given document. The term
frequency 𝑡𝑓 (𝑡, 𝑑) is the number of occurrences of a specific term
𝑡 in a document 𝑑. Term frequency indicates how important a
particular term is in a document. There are multiple ways of
defining frequency, but the well-known measure is described as
14
follows.

𝑡𝑓 (𝑡, 𝑑) =
𝑛𝑡
𝑠

(A.1)

In Eq. (A.1), 𝑛𝑡, 𝑠 denotes the number of particular terms 𝑡 in
𝑑 and the number of terms in 𝑑. Document frequency 𝑑𝑓 (𝑡) is
the number of documents containing a specific term 𝑡. Inverse
document frequency (IDF) is the weight of the term 𝑡, it aims to
reduce the weight of the term if the term appears frequently
throughout all the documents. IDF can be calculated as follows.

𝑖𝑑𝑓 (𝑡) = 𝑙𝑜𝑔( 𝑁
𝑑𝑓 (𝑡)

) (A.2)

In Eq. (A.2), 𝑑𝑓 (𝑡), 𝑁 denotes TF score of term 𝑡, the number
of documents. Then the TF-IDF value of the specific term 𝑡 in
document 𝑑 is obtained by multiplying two values 𝑡𝑓 (𝑡, 𝑑) and
𝑖𝑑𝑓 (𝑡).

𝑡𝑓 _𝑖𝑑𝑓 (𝑡, 𝑑) = 𝑡𝑓 (𝑡, 𝑑) × 𝑖𝑑𝑓 (𝑡) (A.3)

• Word2Vec
The word vectors generated from Word2Vec are contingent on
context dependency between words, which is clearly useful for
differentiating homonyms. This means that words in different
contexts have different meanings. The inferred meaning of a
word, which we call the focus word, depends on context words
(or surrounding words). The word 𝑤 in text is expressed to one
hot vector 𝑉𝑤 having a number of dimensions equal to the number
of words in vocabulary denoted 𝑉 . Vector 𝑉𝑤 is respective to one

sequence of bit 0, and only has one bit 1 respective to the index
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Fig. A.10. General Skip-Gram model.

Fig. A.11. General CBOW model.
15
of 𝑤 in vocabulary. Vector 𝑉𝑤 is changed to word vector 𝑉𝑤 by
the transform matrix 𝑾 . Matrix 𝑾 is trained such that words
frequently appear in similar contexts are transformed into similar
word vectors. We have two preferred ways to train matrix 𝑾 is
Skip-Gram and Continuous Bag of Words (CBOW) (Mikolov et al.,
2013).
In Skip-Gram, the distributed representation of the focus word
as the input to predict the context words as the output from the
neuron network was applied for training. Therefore, each training
sample consists of one focus word and one relevant context word.
A scenario of deciding context words is by choosing 𝑘 preceding
words and 𝑘 following words with respect to the focus word
within a document or tweet in our problem. Mikolov et al. (2013)
introduced one hyper-parameter which is the dimension of the
embedded vector 𝑁 . In general, there are around 2𝑘 training
samples for one focus word fed to train the Skip-Gram neuron
network.
In Fig. A.10, 𝑥𝑖 ∈ R𝑉 denotes the one hot vector for the focus
word in the sample. 𝑦𝑖−𝑘+𝑚, 𝑚 = 1, 2,… , 2𝑘, 𝑚 ≠ 𝑘 denote the
embedded one hot vector for context words. The computing
process inside the Skip-Gram model is described by the following
equations.

⎧

⎪

⎨

⎪

⎩

𝜐 = 𝑾 𝑥𝑖 (a)
𝑧 = 𝑾 ′𝜐 (b)
�̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) (c)

(A.4)

In Eq. (A.4), 𝜐, 𝑧, �̂� represent the embedded focus word vector in
hidden layer, the score vector and the probabilities turned from
the score vector respectively. As the Skip-Gram models treat each
context word equally, 𝑾 and 𝑾 ′ are learned by minimizing the
following loss function.

𝐿 =
2𝑘
∑

𝑚=0,𝑚≠𝑘
𝐻(�̂�, 𝑦𝑖−𝑘+𝑚) (A.5)

In Eq. (A.5), 𝐻(�̂�, 𝑦𝑖−𝑘+𝑚) is the cross-entropy function between
the probability vector �̂� and one hot vector 𝑦𝑖−𝑘+𝑚. Finally, the
matrix 𝑾 is employed as the transfer matrix to generate the
word-embedded vector.
In contrast to the Skip-Gram models, distributed representations
of 𝐶 context words 𝑥𝑚𝑖, 𝑚 = 1, 2,… , 𝐶 are treated to generated
focus word 𝑦. Generally, the CBOW model described in A.11
consists of 𝐶 context words, two hyper-parameters 𝑉 and 𝑁 as
mentioned in the Skip-Gram section.
The dimension of the hidden layer and output layer remain the
same. Only the dimension of the input layer and the calculation of
the hidden layer change. The computing process inside the CBOW
model is described by the following equations.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜐𝑚𝑖 = 𝑾 𝑥𝑚𝑖, 𝑚 = 1, 2,… , 𝐶 (a)
�̂� =

𝜐1𝑖 + 𝜐2𝑖 + .. + 𝜐𝐶𝑖
𝐶

(b)

𝑧 = 𝑾 ′�̂� (c)
�̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧) (d)

(A.6)

In Eq. (A.6), 𝜐𝑚𝑖, �̂�, 𝑧, �̂� indicate the embedded context word vector
𝑥𝑖 in hidden layer, average embedded context word vector, score
vector, probabilities turned from score vector respectively. As the
CBOW models learn the probability distribution �̂� from the true
one 𝑦 which is a one-hot vector, the cross-entropy function is used
as the loss function for the models.

𝐿 = 𝐻(�̂�, 𝑦) = −
𝑉
∑

𝑗=1
𝑦𝑗 𝑙𝑜𝑔(𝑦𝑗 ) (A.7)

Since 𝑦 is the one hot vector, 𝐿 in (A.7) is calculated as below.

𝐿 = 𝐻(�̂�, 𝑦) = −𝑦 𝑙𝑜𝑔(𝑦 ) (A.8)
𝑐 𝑐
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In Eq. (A.8), 𝑐 is the index where the focus word’s one hot vector
is 1. In contrast to Skip-Gram, in CBOW models the matrix 𝑾 ′ is
leveraged to embed words in vector.

ppendix B. Long-short term memory (LSTM)

LSTM is formed by 𝑛 cells (units). Each cell takes input as one-word
ector 𝑉𝑤𝑘

from the input sequence 𝑆. To be more specific, the output
of (𝑛 − 1)𝑡ℎ cell is in tune with the (𝑛 − 1)𝑡ℎ input word vector and the
partial input of 𝑛th cell.

LSTM is a variant of RNN, introduced by Hochreiter and Schmid-
huber in 1997 (Graves et al., 2009). LSTMs use a hidden layer as a
memory cell instead of a recurrent cell in order to deliver data at a
higher performance (Fig. B.12). LSTM model consists of computational
blocks repeated over time steps, which helps the LSTM model to have
the ability to add or remove information to cell state, regulated by three
gates input gate, output gate, forget gate. Controlling flow in LSTM is
calculated by the following equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑖𝑑𝑡 = 𝜎(𝑼𝑑
𝑖 𝑉𝑤𝑡

+𝑾 𝑑
𝑖 ℎ𝑑𝑡−1 + 𝑏𝑑𝑖 ) (a)

𝑜𝑑𝑡 = 𝜎(𝑼𝑑
𝑜 𝑉𝑤𝑡

+𝑾 𝑑
𝑜 ℎ𝑑𝑡−1 + 𝑏𝑑𝑜 ) (b)

𝑓 𝑑
𝑡 = 𝜎(𝑼𝑑

𝑠 𝑉𝑤𝑡
+𝑾 𝑑

𝑓 ℎ𝑑𝑡−1 + 𝑏𝑑𝑓 ) (c)
𝐶𝑑
𝑡 = 𝑡𝑎𝑛ℎ(𝑼𝑑

𝐶𝑉𝑤𝑡
+𝑾 𝑑

𝐶 ℎ𝑑𝑡−1 + 𝑏𝑑𝐶 ) (d)
𝐶𝑑
𝑡 = 𝑓 𝑑

𝑡 ⊗𝐶𝑑
𝑡−1 + 𝑖𝑑𝑡 ⊗𝐶𝑑

𝑡 (e)
𝑑𝑡 = ℎ𝑑𝑡 = 𝑜𝑑𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑑

𝑡−1) (f)

(B.1)

In Eqs. (B.1)(a)–(f), 𝑖𝑑𝑡 , 𝑜𝑑𝑡 , 𝑓 𝑑
𝑡 , 𝐶𝑑

𝑡 , ℎ𝑑𝑡 denote input gate, output
gate, forget gate, internal state, and hidden layer at cell state 𝑡 (the
word vector 𝑉𝑤𝑡

as input respectively) in the LSTM cell. 𝑑 denotes the
direction of the LSTM model, it is replaced by 𝑓 for forward direction
(in forward LSTM model) or 𝑏 for backward direction (in backward
LSTM model). Moreover, 𝑼𝑑

𝑖 , 𝑼𝑑
𝑜 , 𝑼𝑑

𝑠 , 𝑼𝑑
𝐶 and 𝑾 𝑑

𝑖 , 𝑾 𝑑
𝑜 , 𝑾 𝑑

𝑠 , 𝑾 𝑑
𝐶

and 𝑏𝑑𝑖 , 𝑏𝑑𝑜 , 𝑏𝑑𝑓 , 𝑏𝑑𝐶 indicate the weight matrices and biases of three
gates and a memory cell, in the order given. The ⊗, + represent the
element-wise multiplication and the addition of two matrices respec-
tively. Fundamentally, the sigmoid (𝜎) activation function helps LSTM
determine what new information is stored in the cell state due to the
output being between zero and one, so when the output is zero, the
information is dismissed, otherwise, it is completely kept. Furthermore,
the input gate decides how much information take from the input state,
which is word vector 𝑉𝑤𝑡

and hidden layer from the previous layer.
imilarly, the output gate regulates the information from the cell state
16

evealed appropriately to the output of the hidden state. n
Therefore, in order to handle one tweet semantic 𝑇𝑠 comprising 𝑘
ords indicated by 𝑘 vectors 𝑉𝑤𝑖

, 𝑖 = 1, 2,… , 𝑘, Bi-LSTM adds one
more LSTM layer, which reverses the direction of information flow.
The two layers with opposite directions are denoted as 𝐿𝑓 and 𝐿𝑏.
Besides, the 𝑖th word vector is processed by the 𝑖th cell of LSTM 𝐿𝑓
and (𝑘− 𝑖+1)𝑡ℎ cell of LSTM 𝐿𝑏 and have the two output denoted as 𝑓𝑖
nd 𝑏𝑖 respectively.

Given two row vectors 𝑥1 =
(

𝑎1, 𝑎2,… , 𝑎𝑛
)

∈ R𝑛 and 𝑥2 =
(

𝑏1, 𝑏2,… , 𝑏𝑚
)

∈ R𝑚, we denote that notation || is the concatenation
operator of these two vector 𝑥1 and 𝑥2 obtain one single row vector,
denoted as �̄� in R𝑛+𝑚.

̄ =
(

𝑎1, 𝑎2,… , 𝑎𝑛, 𝑏1, 𝑏2,… , 𝑏𝑚
)

= 𝑥1 || 𝑥2 (B.2)

The output of Bi-LSTM model is a vector, 𝑉𝐵𝑖𝐿𝑆𝑇𝑀 , formed by
concatenating all 𝑘 vectors obtained from 𝑘 pairs of vectors (𝑓𝑖, 𝑏𝑖).

𝐵𝑖𝐿𝑆𝑇𝑀 = (𝑓1 || 𝑏1) || (𝑓2 || 𝑏2) || ... || (𝑓𝑘 || 𝑏𝑘) (B.3)

Therefore, the output of this system 𝑉𝑜𝑢𝑡𝑝𝑢𝑡 is the concatenation
ector from two vector 𝑉𝑇𝑚 and 𝑉𝐵𝑖𝐿𝑆𝑇𝑀 . 𝑉𝑇𝑚 is the vector express
weet Metadata 𝑇𝑚, and 𝑉𝐵𝑖𝐿𝑆𝑇𝑀 is the output vector of Bi-LSTM.

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑉𝑇𝑚 ||𝑉𝐵𝑖𝐿𝑆𝑇𝑀 (B.4)

Finally, the vector 𝑉𝑜𝑢𝑡𝑝𝑢𝑡 is fed to softmax layer to be classified.

ppendix C. Convolutional neural networks (CNNs)

In CNNs, there are three main hyperparameters controlling the
ize of the output: the depth, stride, and zero-padding. The depth is the
umber of sliding windows we would like to use, each learning to look
or a specific pattern in the input. The stride is the step size that modifies
he amount of movement over the tweet matrix of the sliding window.
he zero-padding allows us to control the spatial size of the output
olumes (most commonly when using it to exactly preserve the spatial
ize of the input volume so the input and output width and height are
he same). If the input volume size is 𝑉𝑤×𝑉ℎ, the receptive field size of

the siding windows is 𝐹𝑤×𝐹ℎ, the stride with which they are applied is
, and the amount of zero-padding used is 𝑃 on the border, spatial size

𝑅𝑤 ×𝑅ℎ of the output volume is computed by the following formula.

𝑅𝑑 =
𝑉𝑑 − 𝐹𝑑 + 2𝑃

𝑆
+ 1, 𝑑 ∈ {𝑤, ℎ} (C.1)

Consider the 𝑖th tweet matrix in 𝑝 user’s tweet matrices, denoted
s 𝑀𝑇𝑖 , has the size of 𝑛 × 𝑚𝑖 as mentioned above, we use 𝑞 sliding
indows 𝐾𝑗 size of 𝑛 × 𝑘𝑗 , 𝑗 = 1, 2,… , 𝑞 and use the stride is one and
o zero-padding, which means 𝑉 , 𝑉 , 𝐹 , 𝐹 , 𝑃 , 𝑆 are 𝑛, 𝑚 , 𝑛, 𝑘 , 0, 1
𝑤 ℎ 𝑤 ℎ 𝑖 𝑗
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respectively, then we acquire 𝑞 result matrices, each has the size of
×(𝑚𝑖−𝑘𝑗+1). Applying ReLU activation and 1-max pooling respectively
n each resulting matrix, we obtain 𝑞 vectors 𝑎𝑗 ∈ R, 𝑗 = 1, 2,… , 𝑞. After
hat, we acquire feature map 𝐹𝑖, which is a concatenation vector from
vectors 𝑎𝑗 , 𝑗 = 1, 2,… , 𝑞.

𝑖 = 𝐶𝑁𝑁(𝑀𝑇𝑖 ) (C.2)

Next, each feature map 𝐹𝑖 of tweet semantics 𝑇𝑠𝑖 is concatenated with
he corresponding tweet metadata 𝑇𝑚𝑖

to generate vector 𝑉𝑡𝑖 , where tweet
etadata 𝑇𝑚𝑖

contains properties of a tweet, described in Sequence-
ased Techniques.

𝑡𝑖 = 𝑇𝑚𝑖
∥ 𝐹𝑖 (C.3)

Then, vector 𝑉𝑡𝑖 is fed to an LSTM model in which each cell takes
he vector 𝑉𝑡𝑖 as the input at state 𝑖th. The 𝑖th cell of the LSTM model
as the output denoted as 𝑑𝑖.

𝑖 = 𝐿𝑆𝑇𝑀(𝑉𝑡𝑖 ) (C.4)

The output of the model is the concatenation vector 𝑉𝐿𝑆𝑇𝑀 from all
vectors 𝑑1, 𝑑2,… , 𝑑𝑝.

𝐿𝑆𝑇𝑀 = 𝑑1 || 𝑑2 || ... || 𝑑𝑝 (C.5)

In addition, neighborhood information 𝑁 is also employed, which
s represented in the form of an undirected graph where vertices
re users and edges are the ‘‘following’’ relationships between them.
eepWalk (Perozzi et al., 2014) was used to generate Graph Embedding
ector of this undirected graph, denoted as 𝑉𝐺𝑟𝑎𝑝ℎ. In addition, we
btain the concatenation vector 𝑉𝑆𝑦𝑠 from 𝑉𝐿𝑆𝑇𝑀 and 𝑉𝐺𝑟𝑎𝑝ℎ.

𝑆𝑦𝑠 = 𝑉𝐿𝑆𝑇𝑀 ||𝑉𝐺𝑟𝑎𝑝ℎ (C.6)

Finally, the vector 𝑉𝑆𝑦𝑠 is fed to a fully-connected layer to be
lassified.
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