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Abstract—For humans, the COVID-19 pandemic and Coron-
avirus have undeniably been a nightmare. Although there are
effective vaccines, specific drugs are still urgent. Normally, to
identify potential drugs, one needs to design and then test
interactions between the drug and the virus in an in silico
manner for determining candidates. This Drug-Target Interaction
(DTI) process, can be done by molecular docking, which is too
complicated and time-consuming for manual works. Therefore, it
opens room for applying Artificial Intelligence (AI) techniques. In
particular, Graph Neural Network (GNN) attracts recent attention
since its high suitability for the nature of drug compounds and
virus proteins. However, to introduce such a representation well-
reflecting biological structures of biological compounds is not a
trivial task. Moreover, since available datasets of Coronavirus
are still not highly popular, the recently developed GNNs have
been suffering from overfitting on them. We then address those
issues by proposing a novel model known as Atom-enhanced
Graph Neural Network with Multi-hop Gating Mechanism. On one
hand, our model can learn more precise features of compounds
and proteins. On the other hand, we introduce a new gating
mechanism to create better atom representation from non-
neighbor information. Once applying transfer learning from
very large databanks, our model enjoys promising performance,
especially when experimenting with Coronavirus.

Index Terms—Coronavirus, Drug-Target Interaction, Graph
Neural Networks, Multi-hop Gating Mechanism

I. INTRODUCTION

Coronavirus (COVID-19) has caused deaths in the world in
recent years. Besides vaccines, drugs are the keys for us to
fight pandemic waves. Hence, drug design plays an essential
role in the pandemic, especially when many virus variants
were increasingly born. Basically, each type of virus has a
specific protein, Hence, drug design is a process of trial-and-
error that creates different compounds as illustrated in Figure
1. A compound can be represented as a graph whose vertices
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and edges are atoms and bonds respectively, and so is the virus.
The designer can measure the effect of a designed compound
by testing interactions between its atoms with those from the
virus protein. If a compound introduces sufficiently many key
interactions with the virus, it may effectively make the virus
inactivated.

Fig. 1. The concept of interaction between drug and protein

To observe interactions between a compound and a virus,
traditional in silico methods rely on docking tools such as
AutoDock Vina, Smina, etc. However, as the docking process
normally takes 3-5 minutes, it is hard for drug designers to
explore large-scale of compounds to obtain the best designs
[1]. With recent advancements in Artificial Intelligence (AI),
AI-based models are used to predict the interactions between
a compound and a protein to select only highly-interactive
compounds for in vitro experiments. This prediction task
is referred to as Drug-Target Interaction (DTI). Especially,
Graph Neural Networks (GNNs) [2] emerged as the latest
techniques for graph processing. Among state-of-the-art GNN-
based models for DTI prediction, the study presented by [3]
is the most remarkable as it does not only utilize GNNs but
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also embeds the 3D structure of the compound and protein
into graph features. This work serves as the baseline for
our research. Moreover, in the COVID-19 pandemic, there
are not many compounds being put in in vitro screening.
The largest crowd-sourcing COVID-19 drug design system,
COVID Moonshot [4], has experimented with approximately
2000 compounds. Among those compounds, only 379 ones
have been captured co-crystal data i.e. the 3D structure by
Fragalysis [5]. Thus, current drug-for-COVID datasets lack
generalization for training AI models, making them suffer
from overfitting. We also address this issue in our study by
proposing a transfer learning strategy. In short, our contribu-
tions are two-fold as follows.

• We apply transfer learning to pretrain the baseline model
on a suitable known-interaction variant of the dataset
from Protein Data Bank [6].

• We propose a new model, known as Atom-enhanced
Graph Neural Network with Multi-hop Gating Mecha-
nism, extended from the baseline one introduced in [3]
with three major improvements as follows: (i) Enriched
atom encoding: we additionally encode atoms with more
important attributes; (ii) Total atom aggregation: we
enhance the baseline model by aggregating not only the
atoms of compounds but also those of the proteins to
produce more informative representation for the input;
and (iii) Multi-hop gating mechanism: we modify the
original gating mechanism to allow atoms affect other
non-neighbor ones, earning improved interaction predic-
tion performance.

II. PRELIMINARIES AND RELATED WORKS

A. Drug-Target Interaction problem

The Drug-Target Interaction problem is common in drug
discovery and solved by methods from traditional to modern
ones [7]. This problem takes a compound and a target protein
as its inputs and uses an algorithm to predict if a compound
interact (be pharmacologically active) with a protein or not
[7]. A compound can be considered active or inactive based
on a predefined threshold [8].

B. Modern DTI prediction techniques

Many techniques from Machine Learning (ML) to Deep
Learning (DL) such as Support Vector Machine, Ensemble
Learning, Transformer, GNN, etc. were applied to speed up
the process of making vaccines and drugs and it makes
no exception for the Drug-Target Interaction problem [9].
Conceptually, recent DTI models initially use suitable AI
techniques to encode the compound and protein into feature
vectors. Then, these models aggregate the two feature vectors
together to feed into a classifier to predict if the compound
is pharmacologically active with the protein or not [3], [10]–
[12]. Some models utilize the attention mechanism to enhance
the out extracted feature vectors [3], [10], [11]. Another ap-
proach to DTI problem is based on the “guilt-by-association”
principle. Methods in this approach try to find similar proteins
and compounds in the known-interaction datasets and then use

them as evidence to predict the input compound-protein. The
biggest shortcoming of this approach is unstable performance
when working with unusual proteins or compounds, because
there isn’t much ”evidence” guiding the model [7].

C. Graph Attention Network Layer

The Graph Neural Networks (GNN) contains multiple lay-
ers. The input graph after being passed through N GNN layers
will be aggregated to form a representation vector. Then, that
vector can be used in multiple downstream tasks. A conceptual
view of a GNN model is illustrated in Figure 2.

Fig. 2. Conceptualization of a GNN model

In this study, we utilize the power of Graph Attention
Networks (GAT) [13], which is the most well-known variant
of GNNs. Assuming we have a graph G = (V,E) where V is
a set of nodes, E is a set of edges and each node has a fixed
number of features F , the input for GAT contains an adjacency
matrix A and a list of node feature vectors X defined as (1)
and (2).

Aij =

{
1 if i and j are connected by an edge
0 otherwise

(1)

X = {x1, x2, . . . , x|V |} with xi ∈ RF (2)

Firstly, the GAT performs linear projection to put the node
feature vectors into F ′-dimensioned embedding space by (3).
In (3), W h ∈ RF ′×F is a learnable weight matrix, and xh

i is
the i-th node projected feature vector.

xh
i = W hxi, i = 1, |V | (3)

Then the GAT calculates attention coefficients eij for all
pairs of (i, j) nodes. These coefficients are then normalized
by the softmax function to decrease the bias and the cost
of computing. When normalizing for eij , only nodes which
are connected to i-th node are considered. Finally, the higher
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representation of each node is produced by weighted sum of
its neighbor nodes using attention coefficients. (4a), (4b) and
(4c) are formal definitions of above operations.



eij = (xh
i )

TW ax
h
j + (xh

j )
TW ax

h
i , i, j = 1, |V | (4a)

aij =
exp(eij)∑

k∈Ci
exp(eik)

Aij , i, j = 1, |V | (4b)

x′
i =

∑
j∈Ci

aijx
h
j , i = 1, |V | (4c)

In (4a), eij is the attention coefficient reflecting the im-
portance of j-th atom to i-th atom and W a ∈ RF ′×F ′

is a
learnable weight matrix. In (4b), aij is the normalized attention
coefficient corresponding to eij and Ci is the set of neighbor
nodes of i-th node. In (4c), x′

i is the higher representation of
i-th node feature vector. Then the list X ′ = {x′

i ∈ RF ′ |i =
1, |V |} is the output of the GAT layer.

III. THE ATOM-ENHANCED GRAPH NEURAL NETWORK
MODEL WITH MULTI-HOP GATING MECHANISM FOR

DRUG-TARGET INTERACTION PREDICTION

A. The baseline model

Our baseline model reuses the study of Lim [3]. Figure 3
illustrates the model overview.

1) Model input representation: Firstly, the model takes the
input of a compound and a protein as a graph, which is
presented by a matrix of atom features (X) and two adjacency
matrix (A1, A2) and (5), (6) and (7) show how to create these
matrices, respectively. Figure 3 has visualized a conceptual
view of matrix X , A1 and A2.

X = {x1, x2, . . . , xM} with xi ∈ RF (5)

A1
ij =

{
1 if i and j are connected by covalent bond or i = j

0 otherwise
(6)

A2
ij =


A1

ij if i, j ∈ protein or i, j ∈ compound
e−(dij−µ)2/σ if i ∈ protein and j ∈ compound,

or if i ∈ compound and j ∈ protein
0 otherwise

(7)
In (5), xi is a feature vector of an atom which contains

F features shown in Table I and M is the total atoms in the
graph representing both compound and protein. In (6) and (7),
i and j are the atom indexes with the same order as of X . A1

ij

and A2
ij are the elements at i-th row and j-th column in the

A1 and A2 matrix, corresponding. In (7), dij is the distance
between i-th atom and j-th atom and µ and σ are learnable
parameters. To adapt this model for our chosen datasets, we
have modified the required input by replacing the 8Å-radius
atoms of protein by the atoms in the protein pocket as hinted

TABLE I
THE LIST OF ATOM FEATURES USED IN ORIGINAL STUDY AND IN

IMPROVEMENT 1

Feature Value
Original

Atom type C,N,O,S,F,P,Cl,Br,B,H (onehot)
Degree of atom 0, 1, 2, 3, 4, 5, 6 (onehot)
Number of H atoms attached 0, 1, 2, 3, 4 (onehot)
Implicit valence electrons 0, 1, 2, 3, 4, 5 (onehot)
In aromatic 0 or 1

Added in Improvement 1
Hydrogen D/A [is donor, is acceptor]
Pos/Neg Ionizable [is pos, is neg]
In lumped hydrophobe 0 or 1

by [14]. Therefore, using the protein cavity makes much more
sense than the original method.

After all the inputs are prepared, they are then passed to the
model for predicting compound-protein interaction.

2) Model architecture: In this baseline model, the GAT
layer is used as the main layer for feature extraction. However,
they modified the original GAT layer by adding a gating
mechanism at the end of the layer to control how much feature
information is passed through. In a formal form, Equation 4c
of the original GAT is replaced by (8).

xtemp
i =

∑
j∈Ci

aijx
h
j , i = 1, |V |

zi = σ(W o(xi||xtemp
i ) + b), i = 1, |V |

x′
i = zixi + (1− zi)x

temp
i , i = 1, |V |

(8)

In (8), W o ∈ R1×2F ′
n is a learnable weight matrix and ’||’

is the concatenation operator.
Let GAT () be the formal representation of all GAT layer

formulations which are (3), (4a), (4b) and (8). With the input
of (X , A1, A2) created from the complex of protein and
compound, we define a GAT block that takes these input
and produces the higher representation for X . Specifically,
the GAT block separates the input into (X , A1) and (X ,
A2), passes them to GAT layer to get output X ′

1 and X ′
2

and perform subtraction X ′
2 − X ′

1 for model to learn the
difference between the structure in a binding pose and the
structure as separated. Equation 9 presents insights of a GAT
block. 

X ′
1 = GAT (X,A1)

X ′
2 = GAT (X,A2)

X ′
out = X ′

2 −X ′
1

(9)

In (9), X ′
out is the output of GAT block. According to

the original study, authors stacked N GAT block to achieve
better feature representations. This can be done by using the
output of the previous GAT block X ′

out with two adjacency
matrices A1, A2 as the input for the next GAT block. Please
notice that the number of nodes in the GAT layer is equal
to the total number of atoms of both protein and compound
(|V | = M ).

The output refined atom feature vectors of the last GAT
block are aggregated in the next step to form a feature vector
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Fig. 3. The architecture of the baseline model

xcomplex representing the complex of the input protein and
compound. Equation 10 gives the formulation for creating this
vector. Finally, a classifier with multiple fully-connected layers
is employed to decide if the input complex is active or not.
A fully-connected layer is a non-linear transformation that is
defined in (11).

xcomplex =
∑

i∈compound

xi (10)

y = σ(W cx+ b) (11)

In (11), x, and y are respectively the input and output fully-
connected layer. The W c is a learnable weight matrix and b
is the bias. Each fully-connected layer in the classifier has
its activation function σ as the ReLU function except the
sigmoid function for the final one.

B. The transfer learning strategy

As mentioned above, to deal with insufficient drug data of
Coronavirus’s Mpro protein, we apply a transfer learning strat-
egy for learning the general interaction rules before exploring
specific rules of Mpro protein. Firstly, for each model with
configured settings (e.g improvements), we perform pretrain-
ing using the PDBbind dataset [15] for the model to obtain
the generalizability. After that, we finetune each model using
the Fragalysis dataset. To demonstrate how transfer learning
affects the model performance, we also train the scratch model
with the Fragalysis dataset for comparison.

C. The Atom-enhanced GNN with Multi-hop Gating Mecha-
nism

In this study, we introduce an improved model from the
baseline one, known as Atom-enhanced GNN with Multi-hop
Gating Mechanism1, in which the following improvements are
carried out.

1) Improvement 1: Enriched atom encoding: The first
improvement is enriching atom encoding which adds more
chemical features to the representation of each atom. The
newly added features include atom degree of six, whether an
atom is a hydrogen donor or hydrogen acceptor, whether an
atom can be positive or negative ionizable, whether an atom is
in any lumped hydrophobe, which are the prerequisites of the
corresponding bonding type (a hydrogen bonding requires a
hydrogen donor and a hydrogen acceptor atom, so on). Table
I summarizes all features that are used in this improvement.

2) Improvement 2: Total atom aggregation: The second im-
provement basically bases on an assumption that interactions
are only created if the protein and the compound match some
interaction rules [9]. Therefore, we have modified the original
aggregating layer which calculates the sum of all compound
atom vectors to a combination of compound and protein repre-
sentation vector. With our modification, any protein atoms that
have a minimum distance to any compound atoms less than
5Å will be taken into consideration for interaction prediction.
The mathematical formulations for our new aggregating layer
are proposed in (12a)-(12c).

xcomplex = (xcompound||xprotein) (12a)

xcompound =
∑

i∈compound

xi (12b){
xprotein =

∑
i∈P xi

P = {xp, p ∈ protein|∃c ∈ compound : dist(p, c) < 5Å}
(12c)

In (12a), ’||’ is the concatenation operator and in (12c),
dist(p, c) is the Euclidean distance between protein atom p
and compound atom c.

1Our implementation is available at https://github.com/ViDok-BK/GMGM
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3) Improvement 3: Multi-hop gating mechanism: The third
improvement is the multi-hop gating mechanism. In this im-
provement, we repeat the calculation of the gating mechanism
multiple times. The reason for this improvement is to enlarge
the receptive field of an atom, which is basically based on an
assumption in chemistry that atoms having the same function
(e.g. hydrophilic, hydrophobic, etc.) usually concentrate to-
gether and create a wide area of influence over non-neighbors.
Figure 4 gives an intuitive view of this mechanism. This
improvement is inspired by the attention diffusion mechanism
proposed by Wang et al. [16]. The process of repeating the
gating mechanism calculation exactly matches the process of
approximate computation for attention diffusion except for the
gating coefficient zi which is computed from node feature
vectors compared to manually input in Wang’s study. Let K
be the number of hops in the receptive field of an atom,
the process of calculating multi-hop gating mechanism is
presented in Algorithm 1. Please notice that in our proposed
improvement, we follow Wang’s study to use xh

i for computing
x
(k)
i , k = 1,K instead of xi as in original study of Lim.

Fig. 4. The difference between models with and without multi-hop gating
mechanism

Algorithm 1: Multi-hop gating mechanism
Input : Normalized attention coefficients aij , where

i, j = 1, |V |
Atom feature vectors xh

i , where i = 1, |V |
Number of hops K

Output: Refined atom feature vectors x
(K)
i , where

i = 1, |V |
x
(0)
i = xh

i , i = 1, |V |
for k in Range(1 . . .K) do

xtemp
i =

∑
j∈Ci

aijx
(k−1)
j , i = 1, |V |

zi = σ(W o(x
(0)
i ||xtemp

i ) + b), i = 1, |V |
x
(k)
i = zix

(0)
i + (1− zi)x

temp
i , i = 1, |V |

return X(K) = {x(K)
i |i = 1, |V |}

IV. EXPERIMENTS

A. Datasets and configurations

First of all, we summarize two datasets that are used to
train and test our model in Table II. The PDBbind dataset
is splitted into training and testing sets with a ratio of 8:2

while the Fragalysis dataset is splitted with a ratio of 7:3.
Table II indicates the number of active and inactive complexes
(samples) in each dataset. A complex of protein and compound
is labeled active if its IC50 is equal to or lower than 2.5µM ,
otherwise, it is inactive. Due to the disproportion in the
number of active and inactive samples, we implemented the
undersampling technique to the class with a higher quantity
to wipe out the bias in the training process.

TABLE II
THE NUMBER OF COMPOUND-PROTEIN COMPLEXES USED FOR TRAINING

AND TESTING OF EACH DATASET

PDBbind Fragalysis
Active Inactive Total Active Inactive Total

Training 10037 5237 15274 75 125 200
Testing 2530 1287 3817 35 54 89

TABLE III
AUC SCORES OF BASELINE MODEL COMPARED TO OTHER MODELS IN
VARIOUS SETTINGS GROUPED BY MOLECULAR REPRESENTATION TYPE

Model Directly Pretrained Finetuned
with settings trained on on on

Fragalysis PDBbind Fragalysis
String-based representation

DeepDTA 0.870 0.849 0.862
String-based + Feature matrix representation

DrugVQA 0.853 0.819 0.820
Graph-based + String-based representation

GraphDTA-GINConvNet 0.885 0.838 0.874
GraphDTA-GATNet 0.886 0.814 0.890
GraphDTA-GCNNet 0.868 0.836 0.862
GraphDTA-GAT GCN 0.874 0.835 0.874

Graph-based representation
Baseline model 0.841 0.758 0.859
Baseline + Ipmt 1 0.865 0.787 0.896
Baseline + Ipmt 2 0.877 0.785 0.915
Baseline + Ipmt 3 0.870 0.793 0.936
Baseline + Ipmt 1,2 0.822 0.813 0.930
Baseline + Ipmt 1,2,3 0.868 0.820 0.938

To validate our model performance, we compare it with
other deep learning-based ones. Particularly, we choose top-
tier models which requires different input representations
including DeepDTA (string-based) [12], DrugVQA (string-
based for compound + feature matrix for protein) [10] and
GraphDTA (graph-based for compound + string-based for
protein) [11]. We use the metric of Area Under the ROC Curve
(AUC score) to judge overall performance between models.
Table III summarizes the AUC score of the above models and
our model in different settings and scenarios.

B. The benefit of transfer learning strategy

In Table III, we can observe accuracy when our models have
been pre-trained on the PDBbind compared to directly trained
on the Fragalysis. Specifically, toward the baseline model,
the AUC score increases from 0.841 to 0.859 (increased
0.018). With settings containing first two improvements, the
difference is significant up to 0.108. This suggests that without
pretraining, the models can not learn how compounds interact
with proteins and seem overfitted when accompanying with
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our improvements. Although the results pretrained on the
PDBbind dataset are not too high, the pretraining process helps
our models increase their generalizability and learn the general
interaction principles.

C. The effects of proposed improvements

According to Table III, when applying each improvement
separately, the results have higher AUC scores than that of
the baseline model in all scenarios. The most effective im-
provement belongs to the multi-hop gating mechanism. With
this mechanism, finetuned model achieves 0.936 (improved
0.077 from the baseline). Moreover, when our improvements
are combined together, they boost the model performance.
Toward the best-achieved results, the setting including all
three improvements reaches an outstanding score of 0.938
in the finetuning scenario. From the above observations, we
can consider that the multi-hop gating mechanism is really
effective in creating a larger influential field for an atom or
group of atoms, which leads to outstanding results.

D. Comparison with other methods

When being trained directly on Fragalysis, the combination
of the baseline model and Improvement 2 achieves 0.877 AUC
score, which is better than that of DeepDTA and DrugVQA,
at 0.870 and 0.853, respectively. In case being pretrained
on PDBbind, our models show slightly lower performance
than the others. In spite of the unsatisfied results on the
PDBbind dataset, our models outperform the others when
being finetuned on the Fragalysis dataset. In detail, all settings
that have our improvements achieve AUC scores from 0.896
up to 0.938, which are strictly higher than the highest AUC
score of GraphDTA (0.890), DeepDTA (0.862), and DrugVQA
(0.820). These outstanding results suggest that our improved
models can learn general interaction principles and thus, they
achieve better results than other methods.

V. CONCLUSION

Drug-Target Interaction prediction has been an essential
and last-long problem in drug discovery. Toward the COVID-
19 situation, the more effective the method of solving this
problem is, the quicker and cost-lower the drug development
process is. With our proposed model together with the transfer
learning strategy, we achieve a noticeable performance com-
pared to the baseline model and other state-of-the-art ones.
Therefore, our model can be applied in COVID-19 treatment
research centers to boost their productivity. In the future,
our model can be integrated some weighting functions for
assessing the importance of both intra-molecular and inter-
molecular interactions. Moreover, the loss function can be
upgraded for evaluating the strength of pairwise interactions
or the GAT layer can include edge features. In conclusion,
this model has much room to improve including both the
architecture and the optimization process.
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