
Absolute Zero
Reinforced Self-play Reasoning with Zero Data

Presenter: Nguyen Quang Duc

May 31th 2025

Reinforcement Learning with Verifiable Rewards Absolute Zero (Ours)Supervised Learning

Less Human Supervision

The fact that Science walks forward on two feet, namely theory and experiment...

Prof. Robert Millikan - Nobel Laureate 1923

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 2 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 3 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 4 / 42

Motivations
Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finetuning,
Reinforcement Learning using Human/AI/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.

In the far future, artificial intelligence (AI) can surpass human intelligence, and pre-annotated data
can be a barrier for those models to evolve.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 5 / 42

Motivations
Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finetuning,
Reinforcement Learning using Human/AI/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.

In the far future, artificial intelligence (AI) can surpass human intelligence, and pre-annotated data
can be a barrier for those models to evolve.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 5 / 42

Motivations
Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finetuning,
Reinforcement Learning using Human/AI/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.

In the far future, artificial intelligence (AI) can surpass human intelligence, and pre-annotated data
can be a barrier for those models to evolve.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 5 / 42

Motivations
How about the idea of LM self-evolving?

Yes! We can let the models interact with the environment to automatically collect feedback and
continuously improve themselves.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 6 / 42

Motivations
How about the idea of LM self-evolving?
Yes! We can let the models interact with the environment to automatically collect feedback and
continuously improve themselves.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 6 / 42

Motivations
How about the idea of LM self-evolving?
Yes! We can let the models interact with the environment to automatically collect feedback and
continuously improve themselves.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 6 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 7 / 42

Supervised Finetuning

Given a dataset D = {(xi, yi)}Ni=1 currated by human experts or superior AI models. In which πθ is
the LM parameterized by θ, x is the input prompt, and y is the expected output. The optimization
objective of SFT is defined as minimizing:

LSFT(θ) = − E(x,y)∼D log πθ

(
y | x)

If each sample contains a chain-of-thought (e.g., D = {(xi, ci, yi)}Ni=1), then the objective become:

LSFT(θ) = − E(x,c,y)∼D log πθ

(
y, c | x)

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 8 / 42

Supervised Finetuning

Given a dataset D = {(xi, yi)}Ni=1 currated by human experts or superior AI models. In which πθ is
the LM parameterized by θ, x is the input prompt, and y is the expected output. The optimization
objective of SFT is defined as minimizing:

LSFT(θ) = − E(x,y)∼D log πθ

(
y | x)

If each sample contains a chain-of-thought (e.g., D = {(xi, ci, yi)}Ni=1), then the objective become:

LSFT(θ) = − E(x,c,y)∼D log πθ

(
y, c | x)

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 8 / 42

Reinforcement Learning from Environment Feedback

Reinforcement Learning with Verifiable Rewards (RLVR) is a type of Reinforcement Learning from
Environment Feedback, where the rewards are observed by evaluating output in a real
environment.

Depending on our preference, we can choose an appropriate fine-tuning technique. In this study, the
authors want to have one output for each input and a continuous-valued reward for each output.
Thus, they develop their solution based on the Proximal Policy Optimization (PPO) technique.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 9 / 42

Reinforcement Learning from Environment Feedback

Reinforcement Learning with Verifiable Rewards (RLVR) is a type of Reinforcement Learning from
Environment Feedback, where the rewards are observed by evaluating output in a real
environment.

Depending on our preference, we can choose an appropriate fine-tuning technique. In this study, the
authors want to have one output for each input and a continuous-valued reward for each output.
Thus, they develop their solution based on the Proximal Policy Optimization (PPO) technique.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 9 / 42

From Supervised Fine-Tuning to PPO

Supervised Fine-Tuning (SFT) Objective:

LSFT(θ) = −E(x,y)∼D [log πθ(y | x)]

Fine-tunes a language model to imitate human responses.
Objective maximizes likelihood of expert (human or superior AI) responses.

Reinforcement Learning Fine-Tuning:

LRL(θ) = −Ex∼D, y∼πθ
[R(x, y)]

Uses a scalar reward signal R(x, y) to guide optimization.
We need to estimate gradients using samples → use the log-derivative trick.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 10 / 42

Log-Derivative Trick and PPO Objective
Log-Derivative Trick:

∇θLRL(θ) = −Ex∼D, y∼πθ
[R(x, y)∇θ log πθ(y | x)]

Also called the “score function estimator”.
Allows estimating policy gradients from samples.

Proximal Policy Optimization (PPO):

LPPO(θ) = −E(x,y)∼πθold

[
min

(
rθ(y | x) Â, clip (rθ, 1− ϵ, 1 + ϵ) Â

)]
rθ = πθ(y|x)

πθold (y|x) : importance ratio

Â: advantage estimate (similar role to R(·) in RL)
Clip term prevents large policy updates; stabilizes learning.
Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 11 / 42

Advantage Estimation in REINFORCE and REINFORCE++
Vanilla REINFORCE:

Â =
L−1∑
l=0

(γλ)lδL−l−1, where δt = rt + γV (xt+1)− V (xt)

V (s): learned value function (i.e., the LLM with a different head layer)
λ ∈ [0, 1]: controls bias-variance tradeoff
γ: Discount factor
L: Generation length

REINFORCE++: Batch-normalized advantage

Ânorm =
r −mean

(
{Â}B

)
std

(
{Â}B

)
Normalization is done over batch B to stabilize learning
Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 12 / 42

Absolute Zero’s concept

Reinforcement Learning with Verifiable Rewards Absolute Zero (Ours)Supervised Learning

Less Human Supervision

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 13 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 14 / 42

Overview of Absolute Zero

Language Model

𝜋!"#!$%&

𝜋'#()*

𝜏

𝑥, 𝑦⋆ , 𝑟"#$"$%&

𝑦

Environment
𝑒, 𝑓

𝑟%$'(&

Environment
𝑒

π: The language model τ : The proposed task
e: Environment y⋆, y: The expected and real output
f : Task validator and constructor r: Reward value

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 15 / 42

What are the tasks?
Reasoning task: triplet (p, i, o) where p: program, i: input, o = p(i): output

Goal: infer one element of the triplet given the other two. This corresponds to three
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, i)
Proposer: Given task type α = deduction, generate pair (p, i) from reference examples
Solver: Predict output oπ; verified with type-aware equality

2. Abduction (Infer i from p, o)
Proposer: Given α = abduction, generate (p, i) to match known output o

Solver: Predict input iπ such that p(iπ) = o; verified via output value

3. Induction (Infer p from {input-output} examples)
Proposer: Sample p, generate N new examples and message m; store (p, {(in, on)}, m)
Solver: Given few-shot examples and m, synthesize correct program pπ

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 16 / 42

What are the tasks?
Reasoning task: triplet (p, i, o) where p: program, i: input, o = p(i): output

Goal: infer one element of the triplet given the other two. This corresponds to three
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, i)
Proposer: Given task type α = deduction, generate pair (p, i) from reference examples
Solver: Predict output oπ; verified with type-aware equality

2. Abduction (Infer i from p, o)
Proposer: Given α = abduction, generate (p, i) to match known output o

Solver: Predict input iπ such that p(iπ) = o; verified via output value

3. Induction (Infer p from {input-output} examples)
Proposer: Sample p, generate N new examples and message m; store (p, {(in, on)}, m)
Solver: Given few-shot examples and m, synthesize correct program pπ

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 16 / 42

What are the tasks?
Reasoning task: triplet (p, i, o) where p: program, i: input, o = p(i): output

Goal: infer one element of the triplet given the other two. This corresponds to three
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, i)
Proposer: Given task type α = deduction, generate pair (p, i) from reference examples
Solver: Predict output oπ; verified with type-aware equality

2. Abduction (Infer i from p, o)
Proposer: Given α = abduction, generate (p, i) to match known output o

Solver: Predict input iπ such that p(iπ) = o; verified via output value

3. Induction (Infer p from {input-output} examples)
Proposer: Sample p, generate N new examples and message m; store (p, {(in, on)}, m)
Solver: Given few-shot examples and m, synthesize correct program pπ

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 16 / 42

What are the tasks?
Reasoning task: triplet (p, i, o) where p: program, i: input, o = p(i): output

Goal: infer one element of the triplet given the other two. This corresponds to three
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, i)
Proposer: Given task type α = deduction, generate pair (p, i) from reference examples
Solver: Predict output oπ; verified with type-aware equality

2. Abduction (Infer i from p, o)
Proposer: Given α = abduction, generate (p, i) to match known output o

Solver: Predict input iπ such that p(iπ) = o; verified via output value

3. Induction (Infer p from {input-output} examples)
Proposer: Sample p, generate N new examples and message m; store (p, {(in, on)}, m)
Solver: Given few-shot examples and m, synthesize correct program pπ

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 16 / 42

What are the tasks?

Absolute Zero: Reinforced Self-play Reasoning with Zero Data

3.2. Learning Different Modes of Reasoning: Deduction, Induction, and Abduction
AZR uses code executor as both a flexible interface and a verifiable environment. This setup enables automatic construction, execution,
and validation of reasoning tasks (Stuart, 2015; Aryabumi et al., 2024). Give program space P , input space I and output space O of
a coding language, we define an AZR reasoning task as a triplet (p, i, o), where p → P is a program, i → I is an input, and o → O is
the corresponding output produced by running program on input, o = p(i). AZR learns by reasoning about different parts of this task
triplet, using three distinct core reasoning modes, each of which focuses on inferring one part of the triplet given the others:

1. Deduction: predicting the output o given a program p and input i, capturing step-by-step logical reasoning.
• As a proposer, AZR is conditioned on the task type α = deduction andK reference examples from the deduction bufferDdeduction
(all task buffers are outlined in Section 3.3), and generates a pair (p, i). The environment e then executes p(i) to compute o,
completing the triplet (p, i, o), which is added to the buffer if non-error output was produced.

• As a solver, the model receives (p, i) and predicts the output oπ . The predicted output is verified using type-aware value equality
in python to account for possible variations (such as set ordering or fractions).

2. Abduction: inferring a plausible input i given the program p and an output o, resembling trial-and-error or online search.
• As a proposer, the policy πpropose’s input and output is almost the same as the proposer for the deduction task, except that the task

type α = abduction is changed as an input. The model generates a pair (p, i) conditioned on α and reference examples. Then we
executes p(i) and get the triplet (p, i, o).

• As a solver, the model receives (p, o) and predicts iπ . The solution is verified by checking whether p(iπ) = o. Since programs
may not be bijective, we use output value equivalence rather than requiring exact input matches.

3. Induction: synthesizing a program p from a set of in-out examples {(in, on)}, requiring generalization from partial information.
• As a proposer, AZR samples a valid program p fromDabduction∪Ddeduction, generatesN new inputs and a messagem, and uses the

environment to compute corresponding outputs. This forms an extended task representation (p, {(in, on)},m), which is stored
in the induction buffer Dinduction. Since infinitely many functions can map the inputs to the outputs, making the induction task
under-constrained, the messagem helps properly condition the problem for the solver.

• As a solver, the model is shown the first half of the input-output pairs and the messagem, and must synthesize a program pπ that
correctly maps the remaining hidden inputs to their outputs. The use of held-out examples discourages overfitting through if-else
logic and promotes generalized induction.

Program Triplet

Input: "Hello World"

1 def f(x):
2 return x

Output: "Hello World"

Figure 5. The Seed AZR Zero Triplet. The above
identity function triplet was the only triplet provided
to AZR to initiate its self-bootstrap propose-and-solve
RLVR loop. We note that the base LLM is fully ca-
pable of initiating the AZR loop without any seed pro-
gram; its inclusion illustrates our approach’s flexibility:
we can optionally initialize seed programswith existing
datasets of varying complexity, and we initialized ours
with the simplest program.

Each reasoning task type leverages code as an expressive and verifiable
medium, aligning with the Absolute Zero Paradigm’s goals of fully self-
improving systems in open-ended domains (DeepSeek-AI et al., 2025; Lam-
bert et al., 2024). All prompts used by three different task types and two
types of roles within a task type are shown in Figures 34 to 39. Next, we
outline exact details of our algorithm.

3.3. Absolute Zero Reasoner Learning Algorithm
In this section, wewill discuss details of our AZR self-play algorithm, includ-
ing initialization of buffers 3.3.1, usage of thse buffers 3.3.2, construction of
valid tasks 3.3.3, validating solutions 3.3.4, and finally advantage estimator
calculation 3.3.5. We outline the overall recipe of the self-play procedure of
AZR in Algorithm 1.

3.3.1. BUFFER INITIALIZATION
To initialize AZR self-play, we first generate a seed set of valid triplets using
the base language model. Each prompt samples up to K triplets from the
current seed buffer Dseed as references. When Dseed is empty at time 0, we
fall back to the zero triplet show in Figure 5. During the seeding stage, we
use the same proposer prompts detailed in Figures 34 to 36.

First, for deduction and abduction tasks, the LLM is prompted to generate
(p, i) pairs, which are filtered, executed, and stored as valid triplets. We
initialize D0

abduction = D0
deduction = Dseed, where |Dseed| = B × S, where

B is the batch size, and S = 4 is a factor we fix in all experiments. All seed triplet’s program are stripped of global variables and
comments (Appendix C), but subsequent iterations of adding new triplets to the buffers are unaltered. No model updates occur during
this phase. Similarly, to initialize the induction buffer, we sample programs fromDseed, generate matching input sets and messages, and
collect valid examples until |D0

induction| = B × S.

6

Figure 1: Example of the task triplet

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 17 / 42

Training Flow

model rewardmodel input/output rogramP utputOnputI (, ,)

 Learnability

Reward

Accuracy

Reward

Absolute

Zero

Reasoner

Verify

Construct & Estimate
PROPOSE

Self-play

SOLVE

Joint Update

Task Types

Induction:

Abduction:

Deduction:

?X = F ()PO

?X = ()O I

? = F ()P I

Figure 2: Absolute Zero Reasoner Training Overview

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 18 / 42

Optimization Objective and Reward Design

With a control variable z:

LRL(θ) = −Ez∼p(z)

[
E(x,y⋆)∼fe(·|τ),τ∼π

propose
θ

(·|z)

[
rpropose

e (τ, πθ) + λEy∼πsolve
θ

(·|x)
[
rsolve

e (y, y⋆)
]]]

Reward for Proposer: Encourages generation of moderately difficult tasks

rpropose =
{

0, r̄solve = 0 or 1
1− r̄solve, otherwise

where r̄solve = 1
n

n∑
i=1

r
(i)
solve

Reward for Solver: Binary correctness reward

rsolve = I(y=y⋆)

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 19 / 42

Optimization Objective and Reward Design

Composite Reward: Format-Aware Penalty1

R(yπrole) =


rrole, passable response, r ∈ {propose, solver}
−0.5, well-formatted but incorrect
−1, formatting error

Absolute Zero, based on the PPO technique, defines the advantages as below. The improved point
here is computing separate advantages for each task and each role.

Ânorm
task,role = R(yπrole)− µtask,role

σtask,role
, task ∈ {ind,ded,abd}, role ∈ {propose,solve}

1DeepSeek-AI et al., “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 20 / 42

Optimization Objective and Reward Design

Composite Reward: Format-Aware Penalty1

R(yπrole) =


rrole, passable response, r ∈ {propose, solver}
−0.5, well-formatted but incorrect
−1, formatting error

Absolute Zero, based on the PPO technique, defines the advantages as below. The improved point
here is computing separate advantages for each task and each role.

Ânorm
task,role = R(yπrole)− µtask,role

σtask,role
, task ∈ {ind,ded,abd}, role ∈ {propose,solve}

1DeepSeek-AI et al., “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 20 / 42

Absolute Zero Reasoner Learning Algorithm

Algorithm 1 Self-Play Training of Absolute Zero Reasoner (AZR)

Require: Pretrained base LLM πθ; batch size B; #references K; iterations T
1: Dded,Dabd,Dind ← InitSeeding(πθ) ▷ buffer initialzation
2: for t← 1 to T do
3: for b← 1 to B do ▷ PROPOSE PHASE
4: p ∼ Dabd ∪ Dded ▷ sample a program for induction task proposal
5:

{
in
π

}N

n=1, mπ ← π
propose
θ (ind, p) ▷ generate N inputs and a description

6: if
{
(in

π, on
π)

}N

n=1 ← ValidateByExecuting
(
p, {in

π}, syntax
)

then ▷ validate I/Os
7: Dind ← Dind ∪

{
(p, {(in

π, on
π)}, mπ)

}
▷ update induction buffer

8: for α ∈ {ded, abd} do
9:

(
pk, ik, ok

)K

k=1 ∼ Dα ▷ sample K reference examples
10: (pπ, iπ)← π

propose
θ

(
α, {(pk, ik, ok)}

)
▷ propose new task

11: if oπ ← ValidateByExecuting
(
pπ, iπ, syntax,safety,determinism

)
then

12: Dα ← Dα ∪
{
(pπ, iπ, oπ)

}
▷ if valid, update deduction or abduction buffers

13: for all α ∈ {ded, abd, ind} do ▷ SOLVE PHASE
14: (x, y⋆)← SamplePrepareTasks

(
Dα, B, t

)
▷ x, y⋆ prepared based on α

15: yπ ∼ πsolve
θ (x)

16: Reward: Use proposed task triplets and solved answers to get rpropose & rsolve

17: RL update: use Task Relative REINFORCE++ to update πθ

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 21 / 42

Buffer Initialization and Usage

Generate a seed set Dseed of valid triplets using the base LM. Each prompt samples up to K
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).
Initialize:

D0
abduction = D0

deduction = Dseed
D0

induction: sampling program from Dseed, then generate corresponding input and output.
During the self-play stage of AZR, the task buffer is used in three ways.

For Proposer (abduction/deduction): Sample K triplets as in-context examples.
For Induction: Sample one triplet from Dabd

⋃
Dded to propose N inputs {in} and

message m.
If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 22 / 42

Buffer Initialization and Usage

Generate a seed set Dseed of valid triplets using the base LM. Each prompt samples up to K
triplets as references.
At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
D0

abduction = D0
deduction = Dseed

D0
induction: sampling program from Dseed, then generate corresponding input and output.

During the self-play stage of AZR, the task buffer is used in three ways.
For Proposer (abduction/deduction): Sample K triplets as in-context examples.
For Induction: Sample one triplet from Dabd

⋃
Dded to propose N inputs {in} and

message m.
If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 22 / 42

Buffer Initialization and Usage

Generate a seed set Dseed of valid triplets using the base LM. Each prompt samples up to K
triplets as references.
At t = 0, fall back to a zero triplet (the example triplet above).
Initialize:

D0
abduction = D0

deduction = Dseed
D0

induction: sampling program from Dseed, then generate corresponding input and output.

During the self-play stage of AZR, the task buffer is used in three ways.
For Proposer (abduction/deduction): Sample K triplets as in-context examples.
For Induction: Sample one triplet from Dabd

⋃
Dded to propose N inputs {in} and

message m.
If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 22 / 42

Buffer Initialization and Usage

Generate a seed set Dseed of valid triplets using the base LM. Each prompt samples up to K
triplets as references.
At t = 0, fall back to a zero triplet (the example triplet above).
Initialize:

D0
abduction = D0

deduction = Dseed
D0

induction: sampling program from Dseed, then generate corresponding input and output.
During the self-play stage of AZR, the task buffer is used in three ways.

For Proposer (abduction/deduction): Sample K triplets as in-context examples.
For Induction: Sample one triplet from Dabd

⋃
Dded to propose N inputs {in} and

message m.
If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 22 / 42

Buffer Initialization and Usage

Generate a seed set Dseed of valid triplets using the base LM. Each prompt samples up to K
triplets as references.
At t = 0, fall back to a zero triplet (the example triplet above).
Initialize:

D0
abduction = D0

deduction = Dseed
D0

induction: sampling program from Dseed, then generate corresponding input and output.
During the self-play stage of AZR, the task buffer is used in three ways.

For Proposer (abduction/deduction): Sample K triplets as in-context examples.
For Induction: Sample one triplet from Dabd

⋃
Dded to propose N inputs {in} and

message m.
If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 22 / 42

Constructing Valid Tasks

Validation Steps:
1. Program Integrity: Run p(i), check for return + no errors.
2. Program Safety: Ban unsafe packages (os, sys, etc.).
3. Determinism: Approximate by running j = 2 times, check consistent outputs:

∀p,∀i : p(i)(1) = p(i)(2)

Task Input/Output Answer Verification

Deduction x = (p, i); y = o⋆; rsolve = I[o == o⋆]
Abduction x = (p, o); y = i⋆; rsolve = I[p(i) == p(i⋆)]
Induction x = ({in, on}N/2, m); y = p⋆; rsolve = ΠN

n=N/2I[p(in) == on]

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 23 / 42

Constructing Valid Tasks

Validation Steps:
1. Program Integrity: Run p(i), check for return + no errors.
2. Program Safety: Ban unsafe packages (os, sys, etc.).
3. Determinism: Approximate by running j = 2 times, check consistent outputs:

∀p,∀i : p(i)(1) = p(i)(2)

Task Input/Output Answer Verification

Deduction x = (p, i); y = o⋆; rsolve = I[o == o⋆]
Abduction x = (p, o); y = i⋆; rsolve = I[p(i) == p(i⋆)]
Induction x = ({in, on}N/2, m); y = p⋆; rsolve = ΠN

n=N/2I[p(in) == on]

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 23 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 24 / 42

Result Summary

Figure 3: Overall results of Absolute Zero compared to other algorithms

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 25 / 42

Key Findings and Insights

AZR achieves remarkable results in math and code reasoning with zero in-distribution data.

Strong Zero-Data Performance:
Matches or beats fine-tuned zero reasoners in
math.
Sets new SOTA in code with RLVR-free training.
Outperforms prior zero-trained models by +1.8
avg points.

Code Priors Amplify Reasoning:
Qwen-Coder-7b starts lower but ends up higher
after running Absolute Zero.

Cross-Domain Transfer:
AZR boosts math accuracy by +10.9 / +15.2 with
code training.
Far exceeds RLVR-trained models (+0.65).

Scaling Helps:
Bigger models yield bigger gains: +5.7 (3B), +10.2 (7B), +13.2
(14B).

Emergent Planning via Comments:
AZR uses ReAct-style scratchpads in code reasoning.
Similar to behaviors in 671B formal math models.

Cognitive Behaviors Emerge:
Step-by-step, enumeration, trial-and-error arise naturally.
Token usage grows, esp. in abd. task.

Safety Concerns:
“Uh-oh moments” with LLaMA3.1-8B show risky chains of
thought.
Emphasizes the need for safety-aware reasoning training.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 26 / 42

Detailed Results

Model Base #data HEval+ MBPP+ LCBv1-5 AME24 AME25 AMC M500 Minva Olypiad CAvg MAvg AVG

Base Models

Qwen2.5-7B - - 73.2 65.3 17.5 6.7 3.3 37.5 64.8 25.0 27.7 52.0 27.5 39.8
Qwen2.5-7B-Ins - - 75.0 68.5 25.5 13.3 6.7 52.5 76.4 35.7 37.6 56.3 37.0 46.7
Qwen2.5-7B-Coder - - 80.5 69.3 19.9 6.7 3.3 40.0 54.0 17.3 21.9 56.6 23.9 40.2
Qwen2.5-7B-Math - - 61.0 57.9 16.2 10.0 16.7 42.5 64.2 15.4 28.0 45.0 29.5 37.3

Zero-Style Reasoners Trained on Curated Coding Data

AceCoder-RM Ins 22k 79.9 71.4 23.6 20.0 6.7 50.0 76.4 34.6 36.7 58.3 37.4 47.9
AceCoder-Rule Ins 22k 77.4 69.0 19.9 13.3 6.7 50.0 76.0 37.5 37.8 55.4 36.9 46.2
AceCoder-RM Coder 22k 78.0 66.4 27.5 13.3 3.3 27.5 62.6 29.4 29.0 57.3 27.5 42.4
AceCoder-Rule Coder 22k 80.5 70.4 29.0 6.7 6.7 40.0 62.8 27.6 27.4 60.0 28.5 44.3
CodeR1-LC2k Ins 2k 81.7 71.7 28.1 13.3 10.0 45.0 75.0 33.5 36.7 60.5 35.6 48.0
CodeR1-12k Ins 12k 81.1 73.5 29.3 13.3 3.3 37.5 74.0 35.7 36.9 61.3 33.5 47.4

Zero-Style Reasoners Trained on Curated Math Data

PRIME-Zero Coder 484k 49.4 51.1 11.0 23.3 23.3 67.5 81.2 37.9 41.8 37.2 45.8 41.5
SimpleRL-Zoo Base 8.5k 73.2 63.2 25.6 16.7 3.3 57.5 77.0 35.7 41.0 54.0 38.5 46.3
Oat-Zero Math 8.5k 62.2 59.0 15.2 30.0 16.7 62.5 80.0 34.9 41.6 45.5 44.3 44.9
ORZ Base 57k 80.5 64.3 22.0 13.3 16.7 60.0 81.8 32.7 45.0 55.6 41.6 48.6

Absolute Zero Training w/ No Curated Data (Ours)

AZR (Ours) Base 0 71.3-1.9 69.1+3.8 25.3+7.8 13.3+6.6 13.3+10.0 52.5+15.0 74.4+9.6 38.2+13.2 38.5+10.8 55.2+3.2 38.4+10.9 46.8+7.0

AZR (Ours) Coder 0 83.5+3.0 69.6+0.3 31.7+11.8 20.0+13.3 10.0+6.7 57.5+17.5 72.6+22.6 36.4+19.1 38.2+16.3 61.6+5.0 39.1+15.2 50.4+10.2

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 27 / 42

Example Results

Input: [1,2,3,4,5], 5

Output: 1

Model-proposed Task Response of Predict Input

Let’s analyze the code snippet …(analysis) To find one possible input that produces

the output 1, we need to find a scenario where …(analysis)

Let’s consider a simple example: numbers = [1, 2], target = 1

Here’s the step-by-step calculation:

1. current_sum = 0 + 1 = 1, accumulated_values = [1]

2. current_sum = 1 + 2 = 3, accumulated_values = [1, 3]

-Check for pair (i=0, j=1): 3 - 1 = 2 (not equal to target)

-Check for pair (i=0, j=0): 1 - 1 = 0 (not equal to target)

-Check for pair (i=1, j=1): 3 - 3 = 0 (not equal to target)

Since no pair satisfies the condition, the function will not return any value. This

doesn’t match our output. Let’s try another example …(Tried 3 more examples)

Given the complexity and the fact that no simple example seems to work, let’s

try a more complex scenario: numbers = [2, -1, 1], target = 1

Step-by-step calculation:

1. current_sum = 0 + 2 = 2, accumulated_values = [2]

2. current_sum = 2 - 1 = 1 , accumulated_values = [2, 1]

3. current_sum = 1 + 1 = 2, accumulated_values = [2, 1, 2]

- Check for pair (i=0, j=1): 1 - 2 = -1 (not equal to target)

- Check for pair (i=0, j=2): 2 - 2 = 0 (not equal to target)

- Check for pair (i=1, j=2): 2 - 1 = 1 (equal to target)

The pair (i=1, j=2) satisfies the condition, and the function returns the first

accumulated value in this pair, which is 1. This matches our output.

Figure 4: Example of a Model-Proposed Task and Its Response for Solving an Abduction Task.Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 28 / 42

In- and Out-of-Distribution Performances

50 75 100 125 150 175 200 225 250

Training Steps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

In
-D

is
tr

ib
u

ti
on

A
cc

u
ra

cy

AZR-Llama3.1-8b

AZR-3B-Coder

AZR-7B-Coder

AZR-14B-Coder

(a)

Model Family Variant Code Avg Math Avg Total Avg

Llama3.1-8b 28.5 3.4 16.0
Llama3.1-8b + SimpleRL 33.7+5.2 7.2+3.8 20.5+4.5

Llama3.1-8b + AZR (Ours) 31.6+3.1 6.8+3.4 19.2+3.2

Qwen2.5-3B Coder 51.2 18.8 35.0
Qwen2.5-3B Coder + AZR (Ours) 54.9+3.7 26.5+7.7 40.7+5.7

Qwen2.5-7B Coder 56.6 23.9 40.2
Qwen2.5-7B Coder + AZR (Ours) 61.6+5.0 39.1+15.2 50.4+10.2

Qwen2.5-14B Coder 60.0 20.2 40.1
Qwen2.5-14B Coder + AZR (Ours) 63.6+3.6 43.0+22.8 53.3+13.2

(b)

Figure 5: (a) In-Distribution & (b) Out-of-Distribution Reasoning Task Performances.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 29 / 42

Ablation Study

Omitting any tasks, reducing the number of references, or roles will result in a performance
degradation.

Experiment Task Type Gen Reference Trained Roles Code Avg. Math Avg. Overall

Deduction only Ded / / 54.6 32.0 43.3
w/o Induction Abd, Ded / / 54.2 33.3 43.8
w/o Gen Reference / 0 / 54.4 33.1 43.8
Train Solver Only / / Solve Only 54.8 36.0 45.4
Absolute Zero Abd, Ded, Ind K Propose & Solve 55.2 38.4 46.8

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 30 / 42

RQ1: How does AZR compare to other zero-setting models?

Absolute Zero Reasoner-Coder-7B achieves:
Best-in-class performance among 7B models.
+1.8% gain over previous SOTA in reasoning benchmarks.
+0.3% coding gain over expert-trained models—without human-curated data.

Cross-domain generalization (math→ code):
AZR models: +10.9 (base), +15.2 (coder).
Expert code models: Only +0.65 on average.
Suggests strong generalization without human supervision.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 31 / 42

RQ2–4: Initial Model, Scale, and Class Effects

Base vs. Coder Initialization
AZR-Coder started lower in math (23.9 vs. 27.5) but outperformed Base after training.
Initial coding ability accelerates reasoning gains.

Model Scaling Effects
Greater gains for larger models (O.O.D. performance): +5.7 (3B), +10.2 (7B), +13.2 (14B).
Larger models benefit more from AZR training.

Model Class Change
Llama3.1-8B + AZR improves +3.2 over SimpleRL baseline.
Performance still scales with base model capability.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 32 / 42

RQ5–7: Training Behaviors and Ablations

Emergent Reasoning Behaviors
Self-proposes rich tasks: DP, string ops, Heron’s formula, etc.
Uses intermediate planning (ReAct-like comments).
Shows cognitive behaviors, state tracking—and even “uh-oh” moments.

Ablation Results
Removing task types (e.g., induction): large drop in math performance.
Removing dynamic proposer conditioning: -5 math / -1 code.
Skipping proposer training: -1.4 overall.

Key Insight: Diverse task types and learned proposal strategies are essential to AZR’s success.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 33 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 34 / 42

Related Work: Reinforcement Learning for Reasoning

RL for reasoning has emerged as a key method in post-training reasoning improvement2.
STaR introduced expert iteration + outcome verification via rejection sampling.
o1 scaled this idea and set SOTA in reasoning tasks3.
R1 matched or surpassed o1 with an open-weight model in the zero setting.
Zero setting: RL applied directly to base LLMs, without supervised fine-tuning.
Inspired open-source extensions and RL algorithm improvements4

Procedural RL on human puzzles5, and few-shot RL nearly matches thousands6.
Our work: Absolute Zero—RLVR from base LLMs without prompts, answers, or human data.
2Lambert et al., “TÜLU 3: Pushing Frontiers in Open Language Model Post-Training”.
3Jaech et al., “Openai o1 system card”.
4Zeng et al., “SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild”; Liu et al., “Understanding R1-Zero-Like Training: A

Critical Perspective”; Cui et al., “Process Reinforcement through Implicit Rewards”; Hu et al., “Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning
on the Base Model”; Yu et al., “DAPO: An Open-Source LLM Reinforcement Learning System at Scale”; Y. Yuan et al., “VAPO: Efficient and Reliable Reinforcement Learning for
Advanced Reasoning Tasks”.

5Xie et al., “Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning”.
6Y. Wang et al., Reinforcement Learning for Reasoning in Large Language Models with One Training Example.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 35 / 42

Self-Play and Emergent Reasoning

Self-play: proposal vs. prediction agents (e.g., Schmid et al.7).
AlphaGo/AlphaZero: superhuman play via self-competition8.
Unsupervised variants:

Asymmetric self-play9, unsupervised env design10, automatic goal gen11.
GANs as self-play between generator and discriminator12.

7Schmidhuber, “Exploring the predictable”.
8Silver et al., “Mastering the game of Go with deep neural networks and tree search”.
9Sukhbaatar et al., “Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play”.

10Dennis et al., “Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design”.
11Florensa et al., “Automatic Goal Generation for Reinforcement Learning Agents”.
12Goodfellow et al., “Generative adversarial networks”.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 36 / 42

Self-Play and Emergent Reasoning

LLM-centric self-play:
SPIN, Self-Rewarding LMs13: reward = model itself.
Prover-Verifier Games14; EVA15; SPC16.
Genius, EMPO, TTRL: human queries, no labels17.
Minimo: formal math conjecture–theorem co-training18.

Our work: First to apply self-play for long CoT generation in grounded Python task space.

13Z. Chen et al., “Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models”; W. Yuan et al., “Self-rewarding language models”.
14Kirchner et al., “Prover-Verifier Games improve legibility of LLM outputs”.
15Ye et al., “Evolving Alignment via Asymmetric Self-Play”.
16Jiaqi Chen et al., SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning.
17F. Xu et al., Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning; Zhang et al., Right Question is Already Half the Answer: Fully

Unsupervised LLM Reasoning Incentivization; Y. Zuo et al., TTRL: Test-Time Reinforcement Learning.
18Poesia et al., “Learning Formal Mathematics From Intrinsic Motivation”.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 37 / 42

Weak-to-Strong Supervision

Prior work: Weaker teachers guide stronger learners19.
Superalignment projects explore oversight of superhuman agents20.
Our setting: learner may be superhuman—yet receives no external supervision.
Alternative: Verifiable rewards provide scalable, automatic feedback.
Key difference: learning tasks and goals are not human-defined—entirely self-generated.
Enables fully autonomous reasoning improvement via self-practice + reward refinement.

19Burns et al., “Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision”; Hinton, Vinyals, and Dean, “Distilling the Knowledge in a Neural Network”;
Christiano, Capability Amplification.

20Leike and Sutskever, Introducing Superalignment.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 38 / 42

Table of Contents

1 Introduction

2 Preliminaries

3 Absolute Zero Method

4 Experiments and Results

5 Related Work

6 Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 39 / 42

Conclusion: Absolute Zero Reasoning (AZR)

Absolute Zero paradigm: Reasoning agents generate their own task distribution and improve via
verifiable feedback.
AZR instantiation: Code-based reasoning tasks + RLVR with code executor.
Key results:

Outperformed SOTA in general reasoning and coding—without curated datasets.
Strong performance across model sizes; boosts other model families.

Open-sourced: Code, models, logs to encourage adoption.
Takeaway: AZ unlocks scalable, domain-general reasoning—without reliance on human labels.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 40 / 42

Discussion: Experience, Exploration, and Beyond

Expand environments: web, formal math, world simulators, real-world agents21.
Apply AZ to new domains: science, embodiment, complex planning22.
Future work:

Dynamic learning objective f , privileged info in p(z), multimodal AZR.
Exploration in task space—not just how to solve, but what to solve.

Limitation: AZR showed “uh-oh moments” (e.g. unsafe CoTs); calls for better safety oversight.
Final insight: AZR agents have experience—they define and evolve their own learning journey.

21Zitkovich et al., “RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control”; Ren et al., DeepSeek-Prover-V2: Advancing Formal Mathematical
Reasoning via Reinforcement Learning for Subgoal Decomposition.

22Q. Wu et al., “AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework”; Y. Wu et al., “StateFlow: Enhancing LLM Task-Solving through
State-Driven Workflows”.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 41 / 42

- THE END -
Thank you for your attention

Contact
nqduc@hcmut.edu.vn

	Introduction
	Preliminaries
	Absolute Zero Method
	Experiments and Results
	Related Work
	Conclusion

