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The fact that Science walks forward on two feet, namely theory and experiment...

Prof. Robert Millikan - Nobel Laureate 1923
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Language models (LMs) are babies whose parents are data.
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Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finétuning,
Reinforcement Learning using Human/Al/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.
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Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finétuning,
Reinforcement Learning using Human/Al/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.

In the far future, artificial intelligence (Al) can surpass human intelligence, and pre-annotated data
can be a barrier for those models to evolve.
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How about the idea of LM self-evolving?
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How about the idea of LM self-evolving?

Yes! We can let the models interact with the environment to automatically collect feedback and
continuously improve themselves.
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How about the idea of LM self-evolving?

Yes! We can let the models interact with the environment to automatically collect feedback and /
continuously improve themselves.
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Supervised Finetuning

Given a dataset D = {(z;,;)}, currated by human experts or superior Al models. In which 7 is

the LM parameterized by 6, x is the input prompt, and y is the expected output. The optimization
objective of SFT is defined as minimizing:

Lsrr(0) = — B, ~plogmy (y | )
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Supervised Finetuning

Given a dataset D = {(z;,;)}, currated by human experts or superior Al models. In which 7 is

the LM parameterized by 6, x is the input prompt, and y is the expected output. The optimization
objective of SFT is defined as minimizing:

Lsrr(0) = — B, ~plogmy (y | )

If each'sample contains a chain-of-thought (e.g., D = {(z;, ci, y;) }}X,), then the objective become:

[’SFT(G) = - E(w,c,y)wD 10g o (y,c | x)
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Reinforcement Learning from Environment Feedback

Reinforcement Learning with Verifiable Rewards (RLVR) is a type of Reinforcement Learning from
Environment Feedback, where the rewards are observed by evaluating output in a real
environment.
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Reinforcement Learning from Environment Feedback

Reinforcement Learning with Verifiable Rewards (RLVR) is a type of Reinforcement Learning from
Environment Feedback, where the rewards are observed by evaluating output in a real
environment.

Depending on our preference, we can choose an appropriate fine-tuning technique. In this study, the
authors' want to have one output for each input and a continuous-valued reward for each output.
/ Thus,they develop their solution based on the Proximal Policy Optimization (PPO) technique.
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From Supervised Fine-Tuning to PPO

Supervised Fine-Tuning (SFT) Objective: - —X—

Lspr(0) = —E, ) ~p [logmg(y | 7)]

Fine-tunes a language model to imitate human responses.

Objective maximizes likelihood of expert (human or superior Al) responses.

Reinforcement Learning Fine-Tuning:

[N\ Lre(0) = —EpnD, yrmg [R(:E,y)]

./ Uses a scalar reward signal R(z,y) to guide optimization.

We need to estimate gradients using samples — use the log-derivative trick.
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Log-Derivative Trick and PPO Objective

Log-Derivative Trick:

VoLrL(0) = —Eznp, y~r, [R(x,y) Vologma(y | x)]

Also called the “score function estimator”.

Allows estimating policy gradients from samples.

Proximal Policy Optimization (PPO):

——— ['PPO(Q) = _E(x,y)wﬂgold {mln (Te(y | x) A? clip (T07 I—€1+ 6) A)]

7o (y]z)

: importance ratio
TOgq (Y]2)

N/ ‘7:9;

A: advantage estimate (similar role to R(-) in RL)
Clip term prevents large policy updates; stabilizes learning.
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Advantage Estimation in REINFORCE and REINFORCE++

Vanilla REINFORCE:

L—1
A= Z(fy)\)léL_l_l, where &y =1y + YV (x441) — V(xy)
1=0
V(s): learned value function (i.e., the LLM with a different head layer)
A € [0,1]: controls bias-variance tradeoff
~: Discount factor
L: Generation length

/- REINFORCE++: Batch-normalized advantage
r — mean ({A}B)
std ({4}7)

Normalization is done over batch B to stabilize learning ™

S CSmm— Anorm _
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Absolute Zero’s concept

Supervised Learning Reinforcement Learning with Verifiable Rewards Absolute Zero\(Ours)

PR Kot

Less Human Supervision

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025



Table of Contents

@ Absolute Zero Method

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025



Overview of Absolute Zero

AN

(X, )' ypropose

7 The language model 7: The proposed task
e: Environment y*,y: The expected and real output
_/ [+ Task validator and constructor | r: Reward value
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What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » K —
fundamental modes of reasoning, including deduction, abduction, and induction.
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What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » X —
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, 7)
Proposer: Given task type ov = deduction, generate pair (p, i) from reference examples

Solver: Predict output o ; verified with type-aware equality
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What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » X—
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, 7)
Proposer: Given task type ov = deduction, generate pair (p, i) from reference examples

Solver: Predict output o ; verified with type-aware equality

2. Abduction (Infer ¢ from p, o)
Proposer: Given ov = abduction, generate (p, i) to match known output o
Solver: Predict input i, such that p(i,) = o; verified via output value
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What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » —
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, 7)
Proposer: Given task type ov = deduction, generate pair (p, i) from reference examples

Solver: Predict output o ; verified with type-aware equality

2. Abduction (Infer ¢ from p, o)
Proposer: Given ov = abduction, generate (p, i) to match known output o
Solver: Predict input i, such that p(i,) = o; verified via output value

3. Induction (Infer p from {input-output} examples)
Proposer: Sample p, generate N new examples and message m; store (p, {(i", 0™)}, m)

Solver: Given few-shot examples and m, synthesize correct program p;
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What are the tasks?

Program Triplet

Input: "Hello World"

1| def f(x):
2 return x

Output: "Hello World"

Figure 1: Example of the task triplet
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Training Flow

A

. Learnability .
Construct & Estimate Reward
Task Types
Absolute Self-play | Abduction: @@= (:?}) :
Zero Deduction: 2:=E (@) Joint Update
Reasoner Induction: @=2:(@) N
SOLVE . Accuracy
i > Verify — ------een Reward
— model input/output ----> model reward (@rogram, @@nput, @utput)

Figure 2: Absolute Zero Reasoner Training Overview
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Optimization Objective and Reward Design

With a control variable z:

Lri(0) = —E.op(e) [E@,y*)wrc(-T>,T~ﬂgmp°“<-|z> rPrPO(r, 79) + Ny e[ [0 (4, 4" )]H

Reward for Proposer: Encourages generation of moderately difficult tasks

n

0, Tsolve = O 0r 1 = 1 (@)
T'propose = _ . where Tsove = — Z Tsolve
1 — 7sove, Otherwise ni=

Reward for Solver: Binary correctness reward

T'solve = H(y:y*)
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Optimization Objective and Reward Design

Composite Reward: Format-Aware Penalty'

Trole,  passable response,r € {propose, solver}
R(yr,.) = —0.5, well-formatted but incorrect

-1, formatting error

! DeepSeek-Al ¢t al., “DeepSeck-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”.
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Optimization Objective and Reward Design

Composite Reward: Format-Aware Penalty'

Trole,  passable response,r € {propose, solver}
R(yr,.) = —0.5, well-formatted but incorrect

-1, formatting error

Absolute Zero, based on the PPO technique, defines the advantages as below. The improved point
here is computing separate advantages for each task and each role.

>, R — .
norm - _ (Yrine) — Haskrole task € {ind,ded,abd},role € {propose,solve}

task,role ’
Otask,role

! DeepSeek-Al ¢t al., “DeepSeck-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”. .
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Absolute Zero Reasoner Learning Algorithm

Algorithm 1 Self-Play Training of Absolute Zero Reasoner (AZR)

Require: Pretrained base LLM 7y; batch size B; #references K; iterations 7'

i Ddeds Dabds Dina — INITSEEDING(7p) > buffer initialzation
2 fort+ 10T do y
3 for b < 1to B do > PROPOSE PHASE
4 P ~ Dapd U Dged > sample a program for induction task proposal
5. {i?r}:]:p My mp 7% (ind, p) > generate NV inputs and @ description
6 if {(i7, nﬁ)}ivzl < VALIDATEBYEXECUTING (p, {i}, sYNTAX) then > validate I/Os
7 Dind  Dina U {(p, {(i2, 02)},mz)} > update induction buffer
s for o € {ded, abd} do \
9 (Pks ks Ok)/cK:1 ~ Dqy > sample K reference examples
o (P i) € 70 (a1, { (i i 01)}) > propose new task
—+—X if 0 < VALIDATEBYEXECUTING (p,,7 s SYNTAX,SAFETY,DETERMINISM) then :
1 Dy < Do U {(pryim,0x) } > if valid, update deduction or abduction buffers
1y forall o € {ded, abd, ind} do > SOLVE PHASE
“aa— f@, y*) < SAMPLEPREPARETAsKS (Dy, B, t) >z, y* prepared based on «

is Yoo T(2)

16 Reward: Use proposed task triplets and solved answers to get 7propose & Tsolve

17/ RL update: use Task Relative REINFORCE++ to update g
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Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025



Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).
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Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.
At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
0 — Do —
D%bduction - Ddeduction = Dseed
Dirduction: Sampling program from Dseeq, then generate corresponding input and output.

May 2025
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Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
0 — Do —
D%bduction - Ddeduction = Dseed
Dirduction: Sampling program from Dseeq, then generate corresponding input and output.

During the self-play stage of AZR, the task buffer is used in three ways.
For Proposer (abduction/deduction): Sample K triplets as in-context examples.
| ‘ For Induction: Sample one triplet from Dypg |J Dyeq to propose N inputs {i,, } and

message m.
: " If new batch is not generated completely: Fill with previously validated tasks.
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Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
0 — Do —
D%bduction - Ddeduction = Dseed
Dirduction: Sampling program from Dseeq, then generate corresponding input and output.

During the self-play stage of AZR, the task buffer is used in three ways.

For Proposer (abduction/deduction): Sample K triplets as in-context examples.
N For Induction: Sample one triplet from Dypg |J Dyeq to propose N inputs {i,, } and
message m.
" /. If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.
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Constructing Valid Tasks

Validation Steps:
1. Program Integrity: Run p(7), check for return + no errors.
2. Program Safety: Ban unsafe packages (os, sys, etc.).

3. Determinism: Approximate by running j = 2 times, check consistent outputs:

Vp,Vi: p(i)V) = p(i)®
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Constructing Valid Tasks

Validation Steps:

1. Program Integrity: Run p(7), check for return + no errors.

2. Program Safety: Ban unsafe packages (os, sys, etc.).

3. Determinism: Approximate by running j = 2 times, check consistent outputs:

Vp,Vi: p(i)V) = p(i)®

Task ‘ Input/Output

Answer Verification

Deduction | z = (p,1); y = 0*;
Abduction | z = (p,0); y = i*;
Induction | z = ({in, 00 }V/%,m);y = p*;

T'solve = ]I[O == 0*]
T'solve = ]I[p(i) == p(i*)]
T'solve = Hg:N/Q]I[p(Zn) == On]

Nguyen Quang Duc (HCMUT) Absolute Zero
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Result Summary

Data Comparison Math Domain Coding Domain Overall Performance
0.63 052
AZR (Ours) f( Data Types 0.40 A
Math 062 0.50 3
Oat-Zero 0.38
== code . O ety ) i d
SimpleRL-Zoo € 035
E 0.0 0.46
ORZ £ 0.33 beo Base model
CodeR1 £ 030 0.44 = =+ Prev. SOTA Model
[ 0.58 z
AceCoder a 028 0.42 Performance During RL
N 0.57 *  AZR Final Model
PRIME-Zero 025 0.40
r T T T F T T T 0.56 T T T F T T T T T T 1
10} 10! 10° 10° 0 100 200 300 0 100 200 300 0 50 100 150 200 250 300 . 350

Curated Data Size Training Steps

Figure 3: Overall results of Absolute Zero compared to other algorithms
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Key Findings and Insights

AZR achieves remarkable results in math and code reasoning with zero in-distribution data.

Strong Zero-Data Performance: Scaling Helps:
Matches or beats fine-tuned zero reasoners in Bigger models yield bigger gains: +5.7 (3B), +10.2(7B); +13.2
math. (14B).

Sets new SOTA in code with RLVR-free training. Emergent Planning via Comments:
Outperforms prior zero-trained models by +1.8

. AZR uses ReAct-style scratchpads in code reasoning.
avg points.

Similar to behaviors in 671B formal math models.

Code Priors Amplify Reasoning: Cognitive Behaviors Emerge:

Qwen~Coder-T7b starts lower but ends up higher

- Step-by-step, enumeration, trial-and-error arise naturally.
after running Absolute Zero.

Token usage grows, esp. in abd. task.

Cross-Domain Transfer:

AZR boosts math accuracy by +10.9 / +15.2 with
. code training.

Far exceeds RLVR-trained models (+0.65).

Safety Concerns:
“Uh-oh moments” with LLaMA3. 1-8B show risky chains of
thought.
Emphasizes the need for safety-aware reasoning training.
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Detailed Results

Model Base #data ‘ HEval* MBPP* LCB'® | AME24 AME25 AMC MS500 Minva Olypiad ‘ CAyg MAvg /AVG
Base Models X A
Qwen2.5-7B - - 732 65.3 17.5 6.7 33 375 648 25.0 27.7 52.0 27.5 398
Qwen2.5-7B-Ins - - 75.0 68.5 255 13.3 6.7 525 764 35.7 37.6 56.3 370 467
Qwen2.5-7B-Coder - - 80.5 69.3 19.9 6.7 33 400 540 17.3 21.9 56.6 239 402
Qwen2.5-7B-Math - - 61.0 579 16.2 10.0 16.7 425 642 15.4 28.0 45.0 295 373
Zero-Style Reasoners Trained on Curated Coding Data
AceCoder-RM Ins 22k 79.9 71.4 23.6 20.0 6.7 50.0 764 34.6 36.7 583 3745479
AceCoder-Rule Ins 22k 77.4 69.0 19.9 133 6.7 50.0  76.0 37.5 37.8 554 369  46.2
AceCoder-RM Coder 22k 78.0 66.4 275 133 33 275 626 29.4 29.0 57.3 275 424
AceCoder-Rule Coder 22k 80.5 70.4 29.0 6.7 6.7 400 628 27.6 27.4 60.0 285 443
CodeR1-LC2k Ins 2k 81.7 71.7 28.1 133 10.0 450 750 335 36.7 60.5 356 480
CodeR1-12k Ins 12k 81.1 73.5 29.3 133 33 375 740 35.7 36.9 61.3 335 474

Zero-Style Reasoners Trained on Curated Math Data

PRIME-Zero Coder 484k 49.4 51.1 11.0 233 233 675 812 37.9 41.8 37.2 458 415
SimpleRL-Z6o Base 8.5k 73.2 63.2 25.6 16.7 33 575 770 35.7 41.0 54.0 385 463
Oat-Zero Math 8.5k 62.2 59.0 15.2 30.0 16.7 62.5  80.0 34.9 41.6 455 443 449
/ _ORZ Base 57k 80.5 64.3 22.0 133 16.7 60.0  81.8 327 45.0 556 416 486
Absolute Zero Training w/ No Curated Data (Ours)
AZR (Ours) Base 0 71.3 69.1°° 2537 13.3°¢  13.370 52,590 74.47° 38.2°07  38.57°% 55277 3847 46.87°

AZR (Ours) Coder 0 83.5""  69.6°" 317" 20.0""  10.0*7 7.5 72.67° 36.47 38.27% 61.6°" 39.1°7° 50.4°
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Example Results

Model-proposed Task Response of Predict Input

[ Input: [1,2,3,4,5], 5 ] Let’s analyze the code snippet ...(analysis) To find one possible input that produces
the output 1, we need to find a scenario where ...(analysis)
Let’s ider a simple ple: numbers = [1, 2], target =1
Here’s the step-by-step calculation:
1. current_sum= 0+ 1 =1, accumulated_values = [1]

def f(numbers: list[int], target: int) -> int: 2. current_sum = 1 + 2 = 3, accumulated_values = [1, 3]
accumulated_values = [] -Check for pair ( ):3 - 1 =2 (not equal to target)
current_sum = 0 -Check for pair (i=0, j=0): 1 - 1 = 0 (not equal to target)
for number in numbers: -Check for pair (i=1, j=1): 3 - 3 = 0 (not equal to target)

current_sum += number . . . L. . . .
- Since no pair satisfies the condition, the function will not return any value. This
accumulated_values.append(current_sum)

result = 0 doesn’t match our output. Let’s try another example ...(Tried 3 more examples)
for i in range(len(accumulated_values)): . . X
for j in range(i + 1, len(accumulated_values)): Given the complexity and the fact that no simple example seems to work, let’s
if accumulated_values[j] \ try a more complex scenario: numbers = [2, -1, 1], target =1
- accumulated_values[i] == target: Step-by-step calculation:
- result = accumulated_values[i] 1. current_sum= 0 + 2 =2, accumulated_values = [2]
return result 2. current_ sum=2-1=1,accumulated_values=[2, 1]
return result 3. current_sum = 1 + 1 =2, accumulated_values = [2, 1, 2]
- Check for pair (i=0, j=1): 1 - 2 =-1 (not equal to target)
- Check for pair (i=0, j=2): 2 - 2 = 0 (not equal to target)
- Check for pair (i=1, j=2): 2 - 1 = 1 (equal to target)
The pair (i=1, j=2) satisfies the condition, and the function returns the first
[ Output: 1 ] accumulated value in this pair, which is 1. This matches our output.

uc (HCMUT) Absolute Zero May 2025



In- and Qut-of-Distribution Performances

Model Family Variant Code Avg Math Avg Total Avg
Llama3.1-8b 28.5 34 16.0
Llama3.1-8b + SimpleRL 33.7°* 7.273¢8 20.5¢42
Llama3.1-8b + AZR (Ours) 31.67%1 6.87%4 19:2+%2
Qwen2.5-3B Coder 51.2 18.8 35.0
Qwen2.5-3B Coder  + AZR (Ours) 54.9757 26.5777 40.77°7
Qwen2.5-7B Coder 56.6 23.9 40.2
sl |= AZRLlama318h —— AZR-7B-Coder Qwen2.5-7B Coder + AZR (Ours) 61.67°° 39.1+12 50.4%102
AZR-3B-Coder — AZR—HB—OW‘)]
0303, 75 00 125 150 175 200 225 250 QWCH25-14B Coder 60.0 20.2 40.1
— Training Steps Qwen2.5-14B Coder + AZR (Ours) 63.67°°¢ 43.0%22# 53.311%
(a) (b)

Figure 5: (a) In-Distribution & (b) Out-of-Distribution Reasoning Task Performances.
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Ablation Study

Omitting any tasks, reducing the number of references, or roles will result in a performance
degradation.

Experiment Task Type Gen Reference  Trained Roles  Code Avg. Math Avg. Overall
Deduction only Ded / / 54.6 32.0 433
w/o Induction Abd, Ded / / 54.2 333 43.8"
w/o Gen Reference / 0 / 54.4 33.1 43.8
Train Solver Only / / Solve Only 54.8 36.0 45.4
————Absolute Zero Abd, Ded, Ind K Propose & Solve 55.2 38.4 46.8
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RQ1: How does AZR compare to other zero-setting models?

Absolute Zero Reasoner-Coder-7B achieves:

Best-in-class performance among 7B models.

+1.8% gain over previous SOTA in reasoning benchmarks.

+0.3% coding gain over expert-trained models—without human-curated data.
Cross-domain generalization (math — code):

AZR models: +10.9 (base), +15.2 (coder).

Expert code models: Only +0.65 on average.

Suggests strong generalization without human supervision.
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RQ2-4: Initial Model, Scale, and Class Effects

Base vs. Coder Initialization
AZR-Coder started lower in math (23.9 vs. 27.5) but outperformed Base after training.
Initial coding ability accelerates reasoning gains.

Model Scaling Effects
Greater gains for larger models (O.0.D. performance): +5.7 (3B), +10.2 (7B), +13.2 (14B).
Larger models benefit more from AZR training.

/ Model Class Change

Llama3.1-8B + AZR improves +3.2 over SimpleRL baseline.

/- Performance still scales with base model capability.
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RQ5—-7: Training Behaviors and Ablations

Emergent Reasoning Behaviors
Self-proposes rich tasks: DP, string ops, Heron’s formula, etc.
Uses intermediate planning (ReAct-like comments).
Shows cognitive behaviors, state tracking—and even “uh-oh” moments.

Ablation Results
Removing task types (e.g., induction): large drop in math performance.

/ Removing dynamic proposer conditioning: -5 math / -1 code.

Skipping proposer training: -1.4 overall.

Key Insight: Diverse task types and learned proposal strategies are essential to AZR’s success.
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Related Work: Reinforcement Learning for Reasoning

RL for reasoning has emerged as a key method in post-training reasoning improvement?.
STaR introduced expert iteration + outcome verification via rejection sampling. '
o1 scaled this idea and set SOTA in reasoning tasks”.

R1 matched or surpassed ol with an open-weight model in the zero setting.

Zero setting: RL applied directly to base LLMs, without supervised fine-tuning.
Inspired open-source extensions and RL algorithm improvements*

Procedural RL on human puzzles’, and few-shot RL nearly matches thousands®.

Our work: Absolute Zero—RLVR from base LLMs without prompts, answers, or human data.

2Lambert et al., *TULU 3: Pushing Frontiers in Open Language Model Post-Training”.
3Jaech et al., “’Openai ol system card”.

A 4Z%Sng—el’al.,“‘SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild”; Liu et al., “Understanding R1-Zero-Like Training: A
Critical Perspective”; Cui etal., “Process Reinforcement through Implicit Rewards”; Hu et al., “Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning
on the Base Model™; Yu et al., “DAPO: An Open-Source LLM Reinforcement Learning System at Scale”; Y. Yuan et al., “VAPO: Efficient and Reliable Reinforcement Learning for
Advanced Reasoning Tasks”.

SXielet al., “Logic—RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning”.

oy, Wang et al.,/Reinforcement Learning for Reasoning in Large Language Models with One Training Example. .
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Self-Play and Emergent Reasoning

Self-play: proposal vs. prediction agents (e.g., Schmid et al.”).
AlphaGo/AlphaZero: superhuman play via self-competition®.

Unsupervised variants:

Asymmetric self-play”, unsupervised env design'?, automatic goal gen''.
12

GANS as self-play between generator and discriminator <.

7Schmidhuber, “Exploring the predictable”.

/' 8Silver et al/; “Mastering the game of Go with deep neural networks and tree search”.
9Sukhbaatar et'al., “Intfinsic Motivation and Automatic Curricula via Asymmetric Self-Play”.
10Dennis et al., “Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design”.

Elorensa et al., “Automatic Goal Generation for Reinforcement Learning Agents”.

12Goodfellow et al., “Generative adversarial networks”.
May 2025
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Self-Play and Emergent Reasoning

LLM-centric self-play:

SPIN, Self-Rewarding LMs'?: reward = model itself.
Prover-Verifier Games'#; EVA!3; SPC!S.

Genius, EMPO, TTRL: human queries, no labels!”.
Minimo: formal math conjecture—theorem co-training'3.

Our work: First to apply self-play for long CoT generation in grounded Python task space.

137, Chen et al., “Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models”; W. Yuan et al., “Self-rewarding language models”.
#Kirchner et al., “Prover-Verifier Games improve legibility of LLM outputs”.

/13 Ye et al., “Evolving Alignment via Asymmetric Self-Play”.
lﬁliaqi Chen et al., SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning.

7 Xwet al., Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning; Zhang et al., Right Question is Already Half the Answer: Fully
Unsupervised LLM Reasoning Incentivization; Y. Zuo et al., TTRL: Test-Time Reinforcement Learning.

18poesia et al., “Learning Formal Mathematics From Intrinsic Motivation”. .
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Weak-to-S g Supervision

Prior work: Weaker teachers guide stronger learners .

kSuperalignment projects explore oversight of superhuman agents°.

Our setting: learner may be superhuman—ryet receives no external supervision.
Alternative: Verifiable rewards provide scalable, automatic feedback.

Key difference: learning tasks and goals are not human-defined—entirely self-generated.

Enables fully autonomous reasoning improvement via self-practice + reward refinement.

lgBums et al., “Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision”; Hinton, Vinyals, and Dean, “Distilling the Knowledge in a Neural Network™;
Christiano, Capability Amplification.

201 ¢ike and Sutskever, Introducing Superalignment. .
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Conclusion: Absolute Zero Reasoning (AZR)

Absolute Zero paradigm: Reasoning agents generate their own task distribution and improve via
verifiable feedback. '

AZR instantiation: Code-based reasoning tasks + RLVR with code executor.
Key results:

Outperformed SOTA in general reasoning and coding—without curated datasets.
Strong performance across model sizes; boosts other model families.

/_Open-sourced: Code, models, logs to encourage adoption.

Takeaway: AZ unlocks scalable, domain-general reasoning—without reliance on human labels.
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Discussion: Experien Exploration, and Bey

Expand environments: web, formal math, world simulators, real-world agent521.
Apply AZ to new domains: science, embodiment, complex planning®2.
Future work:

Dynamic learning objective f, privileged info in p(z), multimodal AZR.
Exploration in task space—not just how to solve, but what to solve.

Limitation: AZR showed “uh-oh moments” (e.g. unsafe CdTs); calls for better safety oversight.

Final insight: AZR agents have experience—they define and evolve their own learning journey.

21Zitkovich et al., “RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control”; Ren et al., DeepSeek-Prover-V2: Advancing Formal Mathematical
Reasoning via Reinforcement Learning for Subgoal Decomposition.

22Q. Wu et al., “AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework™; Y. Wu et al., “StateFlow: Enhancing LLM Task-Solving througl
State-Driven Workflows”. SK
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- THE END -

Thank you for your attention

Contact
nqduc @hcmut.edu.vn
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