\ = VIET NAM ﬂ
NATIONAL BK
UNIVERSITY TP

HO CHI MINH CITY

Absolute Zero
Reinforced Self-play Reasoning with Zero Data

Presenter: Nguyen Quang Duc
May 31" 2025

Supervised Learning Reinforcement Learning with Verifiable Rewards Absolute Zero (Ours)

o

& R FR

Less Human Supervision
VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

= ViET Nam

NATIONAL
UNIVERSITY
HO CHI MM Ty

The fact that Science walks forward on two feet, namely theory and experiment...

Prof. Robert Millikan - Nobel Laureate 1923

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 2/42

Table of Contents

© Introduction
© Preliminaries
@ Absolute Zero Method

@ Experiments and Results

@ Related Work
6 Conclusion

May 2025

Nguyen Quang Duc (HCMUT) Absolute Zero

Table of Contents

© Introduction

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Language models (LMs) are babies whose parents are data.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finétuning,
Reinforcement Learning using Human/Al/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Language models (LMs) are babies whose parents are data.

We have known many methods of continuously fine-tuning LMs, such as: Supervised Finétuning,
Reinforcement Learning using Human/Al/Environment Feedback (e.g., PPO, DPO, KTO). Almost
required pre-annotated data.

In the far future, artificial intelligence (Al) can surpass human intelligence, and pre-annotated data
can be a barrier for those models to evolve.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

How about the idea of LM self-evolving?

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

How about the idea of LM self-evolving?

Yes! We can let the models interact with the environment to automatically collect feedback and
continuously improve themselves.

Nguyen Quang Duc (HCMUT)

Absolute Zero May 2025

How about the idea of LM self-evolving?

Yes! We can let the models interact with the environment to automatically collect feedback and /
continuously improve themselves.

Nguyen Quang Duc (HCMUT) lMay 2025 6/42

Table of Contents

e Preliminaries

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Supervised Finetuning

Given a dataset D = {(z;,;)}, currated by human experts or superior Al models. In which 7 is

the LM parameterized by 6, x is the input prompt, and y is the expected output. The optimization
objective of SFT is defined as minimizing:

Lsrr(0) = — B, ~plogmy (y |)

Nguyen Quang Duc (HCMUT)

Absolute Zero May 2025

Supervised Finetuning

Given a dataset D = {(z;,;)}, currated by human experts or superior Al models. In which 7 is

the LM parameterized by 6, x is the input prompt, and y is the expected output. The optimization
objective of SFT is defined as minimizing:

Lsrr(0) = — B, ~plogmy (y |)

If each'sample contains a chain-of-thought (e.g., D = {(z;, ci, y;) }}X,), then the objective become:

[’SFT(G) = - E(w,c,y)wD 10g o (y,c | x)

Nguyen Quang Duc (HCMUT)

Absolute Zero May 2025

Reinforcement Learning from Environment Feedback

Reinforcement Learning with Verifiable Rewards (RLVR) is a type of Reinforcement Learning from
Environment Feedback, where the rewards are observed by evaluating output in a real
environment.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Reinforcement Learning from Environment Feedback

Reinforcement Learning with Verifiable Rewards (RLVR) is a type of Reinforcement Learning from
Environment Feedback, where the rewards are observed by evaluating output in a real
environment.

Depending on our preference, we can choose an appropriate fine-tuning technique. In this study, the
authors' want to have one output for each input and a continuous-valued reward for each output.
/ Thus,they develop their solution based on the Proximal Policy Optimization (PPO) technique.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

From Supervised Fine-Tuning to PPO

Supervised Fine-Tuning (SFT) Objective: - —X—

Lspr(0) = —E,) ~p [logmg(y | 7)]

Fine-tunes a language model to imitate human responses.

Objective maximizes likelihood of expert (human or superior Al) responses.

Reinforcement Learning Fine-Tuning:

[N\ Lre(0) = —EpnD, yrmg [R(:E,y)]

./ Uses a scalar reward signal R(z,y) to guide optimization.

We need to estimate gradients using samples — use the log-derivative trick.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Log-Derivative Trick and PPO Objective

Log-Derivative Trick:

VoLrL(0) = —Eznp, y~r, [R(x,y) Vologma(y | x)]

Also called the “score function estimator”.

Allows estimating policy gradients from samples.

Proximal Policy Optimization (PPO):

——— ['PPO(Q) = _E(x,y)wﬂgold {mln (Te(y | x) A? clip (T07 I—€1+ 6) A)]

7o (y]z)

: importance ratio
TOgq (Y]2)

N/ ‘7:9;

A: advantage estimate (similar role to R(-) in RL)
Clip term prevents large policy updates; stabilizes learning.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Advantage Estimation in REINFORCE and REINFORCE++

Vanilla REINFORCE:

L—1
A= Z(fy)\)léL_l_l, where &y =1y + YV (x441) — V(xy)
1=0
V(s): learned value function (i.e., the LLM with a different head layer)
A € [0,1]: controls bias-variance tradeoff
~: Discount factor
L: Generation length

/- REINFORCE++: Batch-normalized advantage
r — mean ({A}B)
std ({4}7)

Normalization is done over batch B to stabilize learning ™

S CSmm— Anorm _

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Absolute Zero’s concept

Supervised Learning Reinforcement Learning with Verifiable Rewards Absolute Zero\(Ours)

PR Kot

Less Human Supervision

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Table of Contents

@ Absolute Zero Method

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Overview of Absolute Zero

AN

(X,)' ypropose

7 The language model 7: The proposed task
e: Environment y*,y: The expected and real output
_/ [+ Task validator and constructor | r: Reward value

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » K —
fundamental modes of reasoning, including deduction, abduction, and induction.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » X —
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, 7)
Proposer: Given task type ov = deduction, generate pair (p, i) from reference examples

Solver: Predict output o ; verified with type-aware equality

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » X—
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, 7)
Proposer: Given task type ov = deduction, generate pair (p, i) from reference examples

Solver: Predict output o ; verified with type-aware equality

2. Abduction (Infer ¢ from p, o)
Proposer: Given ov = abduction, generate (p, i) to match known output o
Solver: Predict input i, such that p(i,) = o; verified via output value

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

What are the tasks?

Reasoning task: triplet (p, i, 0) where p: program, i: input, o = p(i): output
Goal: infer one element of the triplet given the other two. This corresponds to three » —
fundamental modes of reasoning, including deduction, abduction, and induction.

1. Deduction (Infer o from p, 7)
Proposer: Given task type ov = deduction, generate pair (p, i) from reference examples

Solver: Predict output o ; verified with type-aware equality

2. Abduction (Infer ¢ from p, o)
Proposer: Given ov = abduction, generate (p, i) to match known output o
Solver: Predict input i, such that p(i,) = o; verified via output value

3. Induction (Infer p from {input-output} examples)
Proposer: Sample p, generate N new examples and message m; store (p, {(i", 0™)}, m)

Solver: Given few-shot examples and m, synthesize correct program p;

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

What are the tasks?

Program Triplet

Input: "Hello World"

1| def f(x):
2 return x

Output: "Hello World"

Figure 1: Example of the task triplet

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Training Flow

A

. Learnability .
Construct & Estimate Reward
Task Types
Absolute Self-play | Abduction: @@= (:?}) :
Zero Deduction: 2:=E (@) Joint Update
Reasoner Induction: @=2:(@) N
SOLVE . Accuracy
i > Verify — ------een Reward
— model input/output ----> model reward (@rogram, @@nput, @utput)

Figure 2: Absolute Zero Reasoner Training Overview

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Optimization Objective and Reward Design

With a control variable z:

Lri(0) = —E.op(e) [E@,y*)wrc(-T>,T~ﬂgmp°“<-|z> rPrPO(r, 79) + Ny e[[0 (4, 4")]H

Reward for Proposer: Encourages generation of moderately difficult tasks

n

0, Tsolve = O 0r 1 = 1 (@)
T'propose = _ . where Tsove = — Z Tsolve
1 — 7sove, Otherwise ni=

Reward for Solver: Binary correctness reward

T'solve = H(y:y*)

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Optimization Objective and Reward Design

Composite Reward: Format-Aware Penalty'

Trole, passable response,r € {propose, solver}
R(yr,.) = —0.5, well-formatted but incorrect

-1, formatting error

! DeepSeek-Al ¢t al., “DeepSeck-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Optimization Objective and Reward Design

Composite Reward: Format-Aware Penalty'

Trole, passable response,r € {propose, solver}
R(yr,.) = —0.5, well-formatted but incorrect

-1, formatting error

Absolute Zero, based on the PPO technique, defines the advantages as below. The improved point
here is computing separate advantages for each task and each role.

>, R — .
norm - _ (Yrine) — Haskrole task € {ind,ded,abd},role € {propose,solve}

task,role ’
Otask,role

! DeepSeek-Al ¢t al., “DeepSeck-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning”. .

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Absolute Zero Reasoner Learning Algorithm

Algorithm 1 Self-Play Training of Absolute Zero Reasoner (AZR)

Require: Pretrained base LLM 7y; batch size B; #references K; iterations 7'

i Ddeds Dabds Dina — INITSEEDING(7p) > buffer initialzation
2 fort+ 10T do y
3 for b < 1to B do > PROPOSE PHASE
4 P ~ Dapd U Dged > sample a program for induction task proposal
5. {i?r}:]:p My mp 7% (ind, p) > generate NV inputs and @ description
6 if {(i7, nﬁ)}ivzl < VALIDATEBYEXECUTING (p, {i}, sYNTAX) then > validate I/Os
7 Dind Dina U {(p, {(i2, 02)},mz)} > update induction buffer
s for o € {ded, abd} do \
9 (Pks ks Ok)/cK:1 ~ Dqy > sample K reference examples
o (P i) € 70 (a1, { (i i 01)}) > propose new task
—+—X if 0 < VALIDATEBYEXECUTING (p,,7 s SYNTAX,SAFETY,DETERMINISM) then :
1 Dy < Do U {(pryim,0x) } > if valid, update deduction or abduction buffers
1y forall o € {ded, abd, ind} do > SOLVE PHASE
“aa— f@, y*) < SAMPLEPREPARETAsKS (Dy, B, t) >z, y* prepared based on «

is Yoo T(2)

16 Reward: Use proposed task triplets and solved answers to get 7propose & Tsolve

17/ RL update: use Task Relative REINFORCE++ to update g

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.
At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
0 — Do —
D%bduction - Ddeduction = Dseed
Dirduction: Sampling program from Dseeq, then generate corresponding input and output.

May 2025

Nguyen Quang Duc (HCMUT) Absolute Zero

Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
0 — Do —
D%bduction - Ddeduction = Dseed
Dirduction: Sampling program from Dseeq, then generate corresponding input and output.

During the self-play stage of AZR, the task buffer is used in three ways.
For Proposer (abduction/deduction): Sample K triplets as in-context examples.
| ‘ For Induction: Sample one triplet from Dypg |J Dyeq to propose N inputs {i,, } and

message m.
: " If new batch is not generated completely: Fill with previously validated tasks.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Buffer Initialization and Usage

Generate a seed set Dyeeq Of valid triplets using the base LM. Each prompt samples up to K/
triplets as references.

At t = 0, fall back to a zero triplet (the example triplet above).

Initialize:
0 — Do —
D%bduction - Ddeduction = Dseed
Dirduction: Sampling program from Dseeq, then generate corresponding input and output.

During the self-play stage of AZR, the task buffer is used in three ways.

For Proposer (abduction/deduction): Sample K triplets as in-context examples.
N For Induction: Sample one triplet from Dypg |J Dyeq to propose N inputs {i,, } and
message m.
" /. If new batch is not generated completely: Fill with previously validated tasks.

Buffers grow when valid triplets are proposed, regardless of reward.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Constructing Valid Tasks

Validation Steps:
1. Program Integrity: Run p(7), check for return + no errors.
2. Program Safety: Ban unsafe packages (os, sys, etc.).

3. Determinism: Approximate by running j = 2 times, check consistent outputs:

Vp,Vi: p(i)V) = p(i)®

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Constructing Valid Tasks

Validation Steps:

1. Program Integrity: Run p(7), check for return + no errors.

2. Program Safety: Ban unsafe packages (os, sys, etc.).

3. Determinism: Approximate by running j = 2 times, check consistent outputs:

Vp,Vi: p(i)V) = p(i)®

Task ‘ Input/Output

Answer Verification

Deduction | z = (p,1); y = 0*;
Abduction | z = (p,0); y = i*;
Induction | z = ({in, 00 }V/%,m);y = p*;

T'solve =]I[O == 0*]
T'solve =]I[p(i) == p(i*)]
T'solve = Hg:N/Q]I[p(Zn) == On]

Nguyen Quang Duc (HCMUT) Absolute Zero

May 2025

Table of Contents

@ Experiments and Results

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Result Summary

Data Comparison Math Domain Coding Domain Overall Performance
0.63 052
AZR (Ours) f(Data Types 0.40 A
Math 062 0.50 3
Oat-Zero 0.38
== code . O ety) i d
SimpleRL-Zoo € 035
E 0.0 0.46
ORZ £ 0.33 beo Base model
CodeR1 £ 030 0.44 = =+ Prev. SOTA Model
[0.58 z
AceCoder a 028 0.42 Performance During RL
N 0.57 * AZR Final Model
PRIME-Zero 025 0.40
r T T T F T T T 0.56 T T T F T T T T T T 1
10} 10! 10° 10° 0 100 200 300 0 100 200 300 0 50 100 150 200 250 300 . 350

Curated Data Size Training Steps

Figure 3: Overall results of Absolute Zero compared to other algorithms

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Key Findings and Insights

AZR achieves remarkable results in math and code reasoning with zero in-distribution data.

Strong Zero-Data Performance: Scaling Helps:
Matches or beats fine-tuned zero reasoners in Bigger models yield bigger gains: +5.7 (3B), +10.2(7B); +13.2
math. (14B).

Sets new SOTA in code with RLVR-free training. Emergent Planning via Comments:
Outperforms prior zero-trained models by +1.8

. AZR uses ReAct-style scratchpads in code reasoning.
avg points.

Similar to behaviors in 671B formal math models.

Code Priors Amplify Reasoning: Cognitive Behaviors Emerge:

Qwen~Coder-T7b starts lower but ends up higher

- Step-by-step, enumeration, trial-and-error arise naturally.
after running Absolute Zero.

Token usage grows, esp. in abd. task.

Cross-Domain Transfer:

AZR boosts math accuracy by +10.9 / +15.2 with
. code training.

Far exceeds RLVR-trained models (+0.65).

Safety Concerns:
“Uh-oh moments” with LLaMA3. 1-8B show risky chains of
thought.
Emphasizes the need for safety-aware reasoning training.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Detailed Results

Model Base #data ‘ HEval* MBPP* LCB'® | AME24 AME25 AMC MS500 Minva Olypiad ‘ CAyg MAvg /AVG
Base Models X A
Qwen2.5-7B - - 732 65.3 17.5 6.7 33 375 648 25.0 27.7 52.0 27.5 398
Qwen2.5-7B-Ins - - 75.0 68.5 255 13.3 6.7 525 764 35.7 37.6 56.3 370 467
Qwen2.5-7B-Coder - - 80.5 69.3 19.9 6.7 33 400 540 17.3 21.9 56.6 239 402
Qwen2.5-7B-Math - - 61.0 579 16.2 10.0 16.7 425 642 15.4 28.0 45.0 295 373
Zero-Style Reasoners Trained on Curated Coding Data
AceCoder-RM Ins 22k 79.9 71.4 23.6 20.0 6.7 50.0 764 34.6 36.7 583 3745479
AceCoder-Rule Ins 22k 77.4 69.0 19.9 133 6.7 50.0 76.0 37.5 37.8 554 369 46.2
AceCoder-RM Coder 22k 78.0 66.4 275 133 33 275 626 29.4 29.0 57.3 275 424
AceCoder-Rule Coder 22k 80.5 70.4 29.0 6.7 6.7 400 628 27.6 27.4 60.0 285 443
CodeR1-LC2k Ins 2k 81.7 71.7 28.1 133 10.0 450 750 335 36.7 60.5 356 480
CodeR1-12k Ins 12k 81.1 73.5 29.3 133 33 375 740 35.7 36.9 61.3 335 474

Zero-Style Reasoners Trained on Curated Math Data

PRIME-Zero Coder 484k 49.4 51.1 11.0 233 233 675 812 37.9 41.8 37.2 458 415
SimpleRL-Z6o Base 8.5k 73.2 63.2 25.6 16.7 33 575 770 35.7 41.0 54.0 385 463
Oat-Zero Math 8.5k 62.2 59.0 15.2 30.0 16.7 62.5 80.0 34.9 41.6 455 443 449
/ _ORZ Base 57k 80.5 64.3 22.0 133 16.7 60.0 81.8 327 45.0 556 416 486
Absolute Zero Training w/ No Curated Data (Ours)
AZR (Ours) Base 0 71.3 69.1°° 2537 13.3°¢ 13.370 52,590 74.47° 38.2°07 38.57°% 55277 3847 46.87°

AZR (Ours) Coder 0 83.5"" 69.6°" 317" 20.0"" 10.0*7 7.5 72.67° 36.47 38.27% 61.6°" 39.1°7° 50.4°

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Example Results

Model-proposed Task Response of Predict Input

[Input: [1,2,3,4,5], 5] Let’s analyze the code snippet ...(analysis) To find one possible input that produces
the output 1, we need to find a scenario where ...(analysis)
Let’s ider a simple ple: numbers = [1, 2], target =1
Here’s the step-by-step calculation:
1. current_sum= 0+ 1 =1, accumulated_values = [1]

def f(numbers: list[int], target: int) -> int: 2. current_sum = 1 + 2 = 3, accumulated_values = [1, 3]
accumulated_values = [] -Check for pair ():3 - 1 =2 (not equal to target)
current_sum = 0 -Check for pair (i=0, j=0): 1 - 1 = 0 (not equal to target)
for number in numbers: -Check for pair (i=1, j=1): 3 - 3 = 0 (not equal to target)

current_sum += number . . . L. . . .
- Since no pair satisfies the condition, the function will not return any value. This
accumulated_values.append(current_sum)

result = 0 doesn’t match our output. Let’s try another example ...(Tried 3 more examples)
for i in range(len(accumulated_values)): . . X
for j in range(i + 1, len(accumulated_values)): Given the complexity and the fact that no simple example seems to work, let’s
if accumulated_values[j] \ try a more complex scenario: numbers = [2, -1, 1], target =1
- accumulated_values[i] == target: Step-by-step calculation:
- result = accumulated_values[i] 1. current_sum= 0 + 2 =2, accumulated_values = [2]
return result 2. current_ sum=2-1=1,accumulated_values=[2, 1]
return result 3. current_sum = 1 + 1 =2, accumulated_values = [2, 1, 2]
- Check for pair (i=0, j=1): 1 - 2 =-1 (not equal to target)
- Check for pair (i=0, j=2): 2 - 2 = 0 (not equal to target)
- Check for pair (i=1, j=2): 2 - 1 = 1 (equal to target)
The pair (i=1, j=2) satisfies the condition, and the function returns the first
[Output: 1] accumulated value in this pair, which is 1. This matches our output.

uc (HCMUT) Absolute Zero May 2025

In- and Qut-of-Distribution Performances

Model Family Variant Code Avg Math Avg Total Avg
Llama3.1-8b 28.5 34 16.0
Llama3.1-8b + SimpleRL 33.7°* 7.273¢8 20.5¢42
Llama3.1-8b + AZR (Ours) 31.67%1 6.87%4 19:2+%2
Qwen2.5-3B Coder 51.2 18.8 35.0
Qwen2.5-3B Coder + AZR (Ours) 54.9757 26.5777 40.77°7
Qwen2.5-7B Coder 56.6 23.9 40.2
sl |= AZRLlama318h —— AZR-7B-Coder Qwen2.5-7B Coder + AZR (Ours) 61.67°° 39.1+12 50.4%102
AZR-3B-Coder — AZR—HB—OW‘)]
0303, 75 00 125 150 175 200 225 250 QWCH25-14B Coder 60.0 20.2 40.1
— Training Steps Qwen2.5-14B Coder + AZR (Ours) 63.67°°¢ 43.0%22# 53.311%
(a) (b)

Figure 5: (a) In-Distribution & (b) Out-of-Distribution Reasoning Task Performances.

Nguyen Quang Duc (HCMUT) Absolute Zero

May 2025

Ablation Study

Omitting any tasks, reducing the number of references, or roles will result in a performance
degradation.

Experiment Task Type Gen Reference Trained Roles Code Avg. Math Avg. Overall
Deduction only Ded / / 54.6 32.0 433
w/o Induction Abd, Ded / / 54.2 333 43.8"
w/o Gen Reference / 0 / 54.4 33.1 43.8
Train Solver Only / / Solve Only 54.8 36.0 45.4
————Absolute Zero Abd, Ded, Ind K Propose & Solve 55.2 38.4 46.8

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

RQ1: How does AZR compare to other zero-setting models?

Absolute Zero Reasoner-Coder-7B achieves:

Best-in-class performance among 7B models.

+1.8% gain over previous SOTA in reasoning benchmarks.

+0.3% coding gain over expert-trained models—without human-curated data.
Cross-domain generalization (math — code):

AZR models: +10.9 (base), +15.2 (coder).

Expert code models: Only +0.65 on average.

Suggests strong generalization without human supervision.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

RQ2-4: Initial Model, Scale, and Class Effects

Base vs. Coder Initialization
AZR-Coder started lower in math (23.9 vs. 27.5) but outperformed Base after training.
Initial coding ability accelerates reasoning gains.

Model Scaling Effects
Greater gains for larger models (O.0.D. performance): +5.7 (3B), +10.2 (7B), +13.2 (14B).
Larger models benefit more from AZR training.

/ Model Class Change

Llama3.1-8B + AZR improves +3.2 over SimpleRL baseline.

/- Performance still scales with base model capability.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

RQ5—-7: Training Behaviors and Ablations

Emergent Reasoning Behaviors
Self-proposes rich tasks: DP, string ops, Heron’s formula, etc.
Uses intermediate planning (ReAct-like comments).
Shows cognitive behaviors, state tracking—and even “uh-oh” moments.

Ablation Results
Removing task types (e.g., induction): large drop in math performance.

/ Removing dynamic proposer conditioning: -5 math / -1 code.

Skipping proposer training: -1.4 overall.

Key Insight: Diverse task types and learned proposal strategies are essential to AZR’s success.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Table of Contents

@ Related Work

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Related Work: Reinforcement Learning for Reasoning

RL for reasoning has emerged as a key method in post-training reasoning improvement?.
STaR introduced expert iteration + outcome verification via rejection sampling. '
o1 scaled this idea and set SOTA in reasoning tasks”.

R1 matched or surpassed ol with an open-weight model in the zero setting.

Zero setting: RL applied directly to base LLMs, without supervised fine-tuning.
Inspired open-source extensions and RL algorithm improvements*

Procedural RL on human puzzles’, and few-shot RL nearly matches thousands®.

Our work: Absolute Zero—RLVR from base LLMs without prompts, answers, or human data.

2Lambert et al., *TULU 3: Pushing Frontiers in Open Language Model Post-Training”.
3Jaech et al., “’Openai ol system card”.

A 4Z%Sng—el’al.,“‘SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild”; Liu et al., “Understanding R1-Zero-Like Training: A
Critical Perspective”; Cui etal., “Process Reinforcement through Implicit Rewards”; Hu et al., “Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning
on the Base Model™; Yu et al., “DAPO: An Open-Source LLM Reinforcement Learning System at Scale”; Y. Yuan et al., “VAPO: Efficient and Reliable Reinforcement Learning for
Advanced Reasoning Tasks”.

SXielet al., “Logic—RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning”.

oy, Wang et al.,/Reinforcement Learning for Reasoning in Large Language Models with One Training Example. .

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 35/42

Self-Play and Emergent Reasoning

Self-play: proposal vs. prediction agents (e.g., Schmid et al.”).
AlphaGo/AlphaZero: superhuman play via self-competition®.

Unsupervised variants:

Asymmetric self-play”, unsupervised env design'?, automatic goal gen''.
12

GANS as self-play between generator and discriminator <.

7Schmidhuber, “Exploring the predictable”.

/' 8Silver et al/; “Mastering the game of Go with deep neural networks and tree search”.
9Sukhbaatar et'al., “Intfinsic Motivation and Automatic Curricula via Asymmetric Self-Play”.
10Dennis et al., “Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design”.

Elorensa et al., “Automatic Goal Generation for Reinforcement Learning Agents”.

12Goodfellow et al., “Generative adversarial networks”.
May 2025

Absolute Zero

Nguyen Quang Duc (HCMUT)

Self-Play and Emergent Reasoning

LLM-centric self-play:

SPIN, Self-Rewarding LMs'?: reward = model itself.
Prover-Verifier Games'#; EVA!3; SPC!S.

Genius, EMPO, TTRL: human queries, no labels!”.
Minimo: formal math conjecture—theorem co-training'3.

Our work: First to apply self-play for long CoT generation in grounded Python task space.

137, Chen et al., “Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models”; W. Yuan et al., “Self-rewarding language models”.
#Kirchner et al., “Prover-Verifier Games improve legibility of LLM outputs”.

/13 Ye et al., “Evolving Alignment via Asymmetric Self-Play”.
lﬁliaqi Chen et al., SPC: Evolving Self-Play Critic via Adversarial Games for LLM Reasoning.

7 Xwet al., Genius: A Generalizable and Purely Unsupervised Self-Training Framework For Advanced Reasoning; Zhang et al., Right Question is Already Half the Answer: Fully
Unsupervised LLM Reasoning Incentivization; Y. Zuo et al., TTRL: Test-Time Reinforcement Learning.

18poesia et al., “Learning Formal Mathematics From Intrinsic Motivation”. .

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 37/42

Weak-to-S g Supervision

Prior work: Weaker teachers guide stronger learners .

kSuperalignment projects explore oversight of superhuman agents°.

Our setting: learner may be superhuman—ryet receives no external supervision.
Alternative: Verifiable rewards provide scalable, automatic feedback.

Key difference: learning tasks and goals are not human-defined—entirely self-generated.

Enables fully autonomous reasoning improvement via self-practice + reward refinement.

lgBums et al., “Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision”; Hinton, Vinyals, and Dean, “Distilling the Knowledge in a Neural Network™;
Christiano, Capability Amplification.

201 ¢ike and Sutskever, Introducing Superalignment. .

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 38/42

Table of Contents

G Conclusion

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Conclusion: Absolute Zero Reasoning (AZR)

Absolute Zero paradigm: Reasoning agents generate their own task distribution and improve via
verifiable feedback. '

AZR instantiation: Code-based reasoning tasks + RLVR with code executor.
Key results:

Outperformed SOTA in general reasoning and coding—without curated datasets.
Strong performance across model sizes; boosts other model families.

/_Open-sourced: Code, models, logs to encourage adoption.

Takeaway: AZ unlocks scalable, domain-general reasoning—without reliance on human labels.

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025

Discussion: Experien Exploration, and Bey

Expand environments: web, formal math, world simulators, real-world agent521.
Apply AZ to new domains: science, embodiment, complex planning®2.
Future work:

Dynamic learning objective f, privileged info in p(z), multimodal AZR.
Exploration in task space—not just how to solve, but what to solve.

Limitation: AZR showed “uh-oh moments” (e.g. unsafe CdTs); calls for better safety oversight.

Final insight: AZR agents have experience—they define and evolve their own learning journey.

21Zitkovich et al., “RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control”; Ren et al., DeepSeek-Prover-V2: Advancing Formal Mathematical
Reasoning via Reinforcement Learning for Subgoal Decomposition.

22Q. Wu et al., “AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework™; Y. Wu et al., “StateFlow: Enhancing LLM Task-Solving througl
State-Driven Workflows”. SK

Nguyen Quang Duc (HCMUT) Absolute Zero May 2025 41 /42

- THE END -

Thank you for your attention

Contact
nqduc @hcmut.edu.vn

&

	Introduction
	Preliminaries
	Absolute Zero Method
	Experiments and Results
	Related Work
	Conclusion

