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The fact that Science walks forward on two feet, namely theory and
experiment...

Prof. Robert Millikan - Nobel Prize 1923
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Flowers diffuse their fragrance with the wind
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Flowers can generate fragrance theirself while data can’t

Then, we might use somethings called "models" to perform generation.
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Diffusion models can overcome previous limitations

Implicit generative models: Generative Adversarial Networks. Due to
adversarial training procedure. they can be unstable [1] and mode
collapse [2].
Likelihood-based models: Autoregressive models [3], Variational
Auto-Encoders [4], Energy-Based Models [5], Normalizing Flow models
[6]. These models require either surrogate objectives to optimize main
objectives or strong restrictions on architecture.

Diffusion models [7, 8, 9, 10] are based on non-equilibrium thermodynamic
basis. They do not require adversarial training nor surrogate objectives so
that they overcome the limitations of previous models while allow very
flexible design.
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Normal distribution

Normal distribution (a.k.a. Gaussian distribution) is a probability distribution
on continous space. This distribution is commonly notated as

N (µ, σ2),

where µ ∈ R and σ2 ∈ R>0 are the mean and variance, respectively.
The Probability Density Function (PDF) of Normal distribution is defined as

ϕ(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
.
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Merging two Normal distributions

Assuming that we have x1 ∼ N (µ1, σ
2
1) and x2 ∼ N (µ2, σ

2
2) and they are

independent to each other. We need to merge these two distributions into
one N (µ̄, σ̄2). Then, if we define the new µ̄ as

µ̄ = E[x] =
n1µ1 + n2µ2

n1 + n2
,

the new variance can be calculated as

σ̄2 = E[x2]− E[x]2 =
σ2
1n

2
1 + σ2

2n
2
2 + (n1µ1 + n2µ2)

2

(n1 + n2)2
− µ̄2
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Merging two Normal distributions

E[x2] = E[(
n1x1 + n2x2

n1 + n2
)2] (1)

=
1

(n1 + n2)2
E[n2

1x
2
1 + n2

2x
2
2 + 2n1n2x1x2] (2)

=
1

(n1 + n2)2
(n2

1E[x21] + n2
2E[x22] + 2n1n2E[x1]E[x2]) (3)

=
(σ2

1 + µ2
1)n

2
1 + (σ2

2 + µ2
2)n

2
2 + 2n1n2µ1µ2

(n1 + n2)2
(4)

=
σ2
1n

2
1 + σ2

2n
2
2 + (n1µ1 + n2µ2)

2

(n1 + n2)2
(5)
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Kullback–Leibler divergence

The Kullback–Leibler divergence (KL divergence), also known as relative
entropy, is a measure of how different two probability distributions are from
each other. It is a non-symmetric measure, meaning that the KL divergence
from P to Q is not necessarily the same as the KL divergence from Q to P .
The KL divergence between two probability distributions P and Q over the
same random variable X is defined as:

DKL(P ||Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx

where p(x) and q(x) are the probability density functions of P and Q,
respectively. The logarithm is usually taken to the base 2 or e.
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Kullback–Leibler divergence

The KL divergence is a non-negative quantity and is equal to zero if and only
if the two distributions P and Q are identical. It is not a true distance
metric, as it violates the triangle inequality and is not symmetric.
The KL divergence has many applications in information theory, statistics,
machine learning, and data science. For example, it is commonly used as a
measure of dissimilarity between two probability distributions in clustering,
classification, and model selection. It is also used in variational inference,
where it is used to minimize the difference between a true posterior
distribution and an approximating distribution.
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Bayes’ theorem

Bayes’ theorem, which is also called conditional probability, decribes a way
to calculate the probability of an event if we already know the occurence of
related event(s).
Assumming that we have two event A and B. The occurence of event A is
depended on the occurence of event B. Then

P (A|B) =
P (AB)

P (B)
=

P (A)P (B|A)
P (B)
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Naming the components

P (A|B) =
P (AB)

P (B)
=

P (A)P (B|A)
P (B)

P (A|B): The posterior probability of A given B

P (B|A): The likelihood of A given a fixed B

P (A): The prior probability of A
P (B): The marginal probability

We can rewrite the Bayes’ theorem as follows

P (A|B) ∝ P (A)P (B|A),

which can be interpreted as

Posterior ∝ Prior × Likelihood.
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The mystery of AI power

In real life, usually we do not know the prior distribution of an event (If we
know, we can alter the future as well). Normally, we can assume the prior
distribution, observe the likelihood and then calculate the posterior
distribution.
Instead of performing real experiments, Artificial Intelligence (AI) models try
to maximize the likelihood of observing data. When maximizing the
likelihood of data, the calculated posterior become the real posterior.
In short, the power of AI is maxmize the likelihood of data to make the
parameterized prior distribution close to the real posterior.

Pθ(A) → P (A|B)
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Notations

Firstly, let us define some symbols for convenience
T : The total number of steps
βt: The step size of of step t

xt: A data point at step t

θ: Learnable parameters
I: Identity matrix

In many usecases, the data point presented as above are the results of
generation process. For example, with the problem of generating facial
images with target attributes, the data points are the images with attributes..
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Diffusion in an overview

Formally, a diffusion process is a process of adding noises to original data
point until the data point is completely noised, then denoising it to get the
original data point.
The process is featurized with a reversible Markov chain. With total step T ,
the Markov chain can be written as

Forward : q(xt|xt−1), t = 1..T

Reverse : q(xt−1|xt,x0), t = 1..T
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Forward diffusion process

We define a Markov chain with Gaussian transitions as follows

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1).

where βt ∈ (0, 1) and βt−1 < βt.
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Forward diffusion process

For further convenience, we define αt = 1− βt, so that αt ∈ (0, 1) and
αt−1 > αt. Then,

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I).

Because the forward process is just adding noises, we can speed up this
process for better efficiency. At each step t ∈ [1..T ], we can sample xt using
the reparameterization trick. With ϵt ∼ N (0, I), we have

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2

= ...

=
√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt =

t∏
i=1

αi
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Forward diffusion process

√
αt(1− αt−1)ϵt−2 ∼ N (0, αt(1− αt−1)I)

√
1− αtϵt−1 ∼ N (0, (1− αt)I)

Then the merge of these two distributions is N (µ̄, σ̄2) as

µ̄ = 1 ∗ 0 + 1 ∗ 0 = 0

σ̄2 = αt(1−αt−1) ∗ 12 + (1−αt) ∗ 12 + (1 ∗ 0+ 1 ∗ 0)2 − 02 = 1−αtαt−1.

Therefore, we have√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1 =

√
1− αtαt−1ϵ̄t−2
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Forward diffusion process

By the above property, we can rewrite the posterior distribution of xt as
follows

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

After having the noised data point xT after T steps, we might need to
denoise it to the original one.
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Reverse diffusion process

As we know, after T steps, we have a noised data point. If the βt is small
enough, the noises will have Gaussian distribution. Thus, we can write down
the reverse process as

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI)

q(xT :0|x0) = q(xT )

T∏
t=1

q(xt−1|xt,x0)
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Reverse diffusion process

Also, using the Bayes’ theorem and PDF, we have

q(xt−1|xt,x0)

= q(xt|xt−1,x0)
q(xt−1|x0)

q(xt|x0)

=

√
1− ᾱt

2πβt(1− ᾱt−1)
exp

(
− 1

2

((xt −
√
αtxt−1)

2

βt
+

(xt−1 −
√
ᾱt−1x0)

2

1− ᾱt−1

− (xt −
√
ᾱtx0)

2

1− ᾱt

))
=

√
1− ᾱt

2πβt(1− ᾱt−1)
exp

(
− 1

2

(x2
t − 2

√
αtxtxt−1+αtx

2
t−1

βt

+
x2
t−1−2

√
ᾱt−1x0xt−1+ᾱt−1x

2
0

1− ᾱt−1
− (xt −

√
ᾱtx0)

2

1− ᾱt

))
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Reverse diffusion process

q(xt−1|xt,x0) =

√
1− ᾱt

2πβt(1− ᾱt−1)
exp

(
− 1

2

(
(
αt

βt
+

1

1− ᾱt−1
)x2

t−1

− (
2
√
αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0)xt−1+C(xt,x0)

))
Easily, we can infer the µ̃(xt,x0) and β̃t as belows

β̃t = 1/(
αt

βt
+

1

1− ᾱt−1
) = 1/(

αt − ᾱt + βt
βt(1− ᾱt−1)

) =
1− ᾱt−1

1− ᾱt
· βt

µ̃t(xt,x0) = (

√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0)/(

αt

βt
+

1

1− ᾱt−1
)

= (

√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0)

1− ᾱt−1

1− ᾱt
· βt

=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

x0
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Reverse diffusion process

Recall that we already have q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), so that we

can observe

µ̃t(xt,x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

1√
ᾱt

(xt −
√
1− ᾱtϵt)

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
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In a nutshell

In conclusion, the diffusion process can be summarized as follows

Forward :q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1)

Reverse :q(xt−1|xt,x0) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
,
1− ᾱt−1

1− ᾱt
· βt

)
q(xT :0|x0) = q(xT )

T∏
t=1

q(xt−1|xt,x0)
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Optimizing the prior to posterior distribution

Notice that in real application, we do not have x0, we only have context to
generate x0. Therefore, we need to parameterize the likelihood estimation
pθ(x0|θ) by θ parameter. Recall that maximizing likelihood problem can be
solved by minimizing log likelihood. Thus,

− log pθ(x0|θ) ≤ − log pθ(x0|θ) +DKL(q(x1:T |x0)∥pθ(x1:T |x0, θ))

= − log pθ(x0|θ) + Ex1:T∼q(x1:T |x0)

[
log

q(x1:T |x0)

pθ(x0:T |θ)/pθ(x0|θ)

]
= − log pθ(x0|θ) + Eq

[
log

q(x1:T |x0)

pθ(x0:T |θ)
+ log pθ(x0|θ)

]
= Eq

[
log

q(x1:T |x0)

pθ(x0:T |θ)

]
Let LVLB = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T |θ)

]
≥ −Eq(x0) log pθ(x0|θ)

then our mission becomes minimizing LV LB.
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Optimizing the prior to posterior distribution

LVLB = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T |θ)

]
= Eq

[
log

∏T
t=1 q(xt|xt−1)

pθ(xT |θ)
∏T

t=1 pθ(xt−1|xt, θ)

]
= Eq

[
− log pθ(xT |θ) +

T∑
t=1

log
q(xt|xt−1)

pθ(xt−1|xt, θ)

]
= Eq

[
− log pθ(xT |θ) +

T∑
t=2

log
q(xt|xt−1)

pθ(xt−1|xt, θ)
+ log

q(x1|x0)

pθ(x0|x1, θ)

]
= Eq

[
− log pθ(xT |θ) +

T∑
t=2

log
(q(xt−1|xt,x0)

pθ(xt−1|xt, θ)
· q(xt|x0)

q(xt−1|x0)

)
+ log

q(x1|x0)

pθ(x0|x1, θ)

]
Duc Q. Nguyen (HCMUT) Diffusion models March 2023 31 / 52



Optimizing the prior to posterior distribution

LVLB = Eq

[
− log pθ(xT |θ) +

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt, θ)
+

T∑
t=2

log
q(xt|x0)

q(xt−1|x0)

+ log
q(x1|x0)

pθ(x0|x1, θ)

]
= Eq

[
− log pθ(xT |θ) +

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt, θ)
+ log

q(xT |x0)

q(x1|x0)

+ log
q(x1|x0)

pθ(x0|x1, θ)

]
= Eq

[
log

q(xT |x0)

pθ(xT |θ)
+

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt, θ)
− log pθ(x0|x1, θ)

]
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Optimizing the prior to posterior distribution

LVLB = Eq[DKL(q(xT |x0) ∥ pθ(xT |θ))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt, θ))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1, θ)︸ ︷︷ ︸
L0

]

Easily, we can consider that LT is a constant because xT is a Gaussian
noised data point. The L0 can be ignored or modeled using a separated
discrete decoder N (x0;µθ(x1, 1),Σθ(x1, 1)) [7]. In short, we need to
minimize

Lt = DKL(q(xt|xt+1,x0) ∥ pθ(xt|xt+1, θ)) for 1 ≤ t ≤ T − 1

Linking to the mystery of optimization, minimizing the above loss term is
equivalent to making the parameterized prior distribution become the true
posterior distribution.
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Noise estimation

Assume that pθ(xt−1|xt, θ) = N (xt−1;µθ(xt, t),σt). We already have

q(xt−1|xt,x0) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt

)
,
1− ᾱt−1

1− ᾱt
· βt

)
.

It is easy to observe that, we need a function to estimate ϵt using xt and t.
Thus,

pθ(xt−1|xt, θ) = N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
,σt

)
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Noise estimation

Lt

= DKL(q(xt|xt+1,x0) ∥ pθ(xt|xt+1, θ))

= Ex0,ϵ

[
log

q(xt|xt+1,x0)

pθ(xt|xt+1, θ)

]
= Ex0,ϵ

[ 1

2∥σt∥22
∥µ̃t(xt,x0)− µθ(xt, t)∥2

]
= Ex0,ϵ

[ 1

2∥σt∥22
∥ 1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵt − xt +
1− αt√
1− ᾱt

ϵθ(xt, t)
)
∥2
]

= Ex0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥σt∥22
∥ϵt − ϵθ(xt, t)∥2

]
= Ex0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥σt∥22
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
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Noise estimation

We can simplify the weighting term in the beginning of the loss because we
have controlled the learning rate [7]. The simplified loss then becomes

Lsimple
t = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
= Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
This loss can be interpreted as optimizing network(s) for predicting the right
noise at each step in forward process. If the esimation(s) are correct, the
reverse process can decode noises to very good data point.
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Training and Sampling procedure

The below of training and sampling procedure belows is belonged to
Denoising Diffusion Probabilistic Models (DDPM) [7].

Algorithm 1: Training procedure
1 Assign value for βt, t = 1..T ;
2 αt = 1− βt, t = 1..T ;
3 ᾱt =

∏t
i=1 αi, t = 1..T ;

4 repeat
5 x0 ∼ q(x0);
6 t ∼ Uniform({1, . . . , T});
7 ϵ ∼ N (0, I);
8 Opimize θ by gradient descent on

∇θ = ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

9 until converged ;
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Training and Sampling procedure

Algorithm 2: Sampling procedure
1 xT ∼ N (0, I);
2 for t = T, . . . , 1 do
3 z ∼ N (0, I) if t > 1 else z = 0;
4 σt =

1−ᾱt−1

1−ᾱt
· βt;

5 xt−1 =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz;

6 end
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Variants of diffusion models I

Here, we present some highlighted variants of diffusion models. Belong the
followings, there are many other variants which are specified for differnt
problems.

Denoising Diffusion Probabilistic Models [7]: This is the main
concept from the begining.

Denoising Diffusion Implicit Model [8]: This model is different from
DDPM by making the sampling procedure deterministic.

xt−1 =
1

√
αt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
+
√

1− ᾱt−1ϵθ(xt, t)

Latent Diffusion Model [9]: Performing diffusion on latent space by
adding an Encoder and a Decoder.
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Variants of diffusion models II

Figure: Latent Diffusion Model. Source [9]
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Variants of diffusion models III

Score-based Diffusion Model [10]: Score-based Diffusion Model
learns to generate data points by maximizing a score function that
measures the similarity between an input point and the training dataset.
They use a deep neural network architecture that takes as input a noise
vector and a data point, and outputs the score for that point.
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Contextual diffusion I

Classifier Guided Diffusion: The representative is Ablated Diffusion
Model (ADM) [11]. This class of models using the gradient from an
aditional classifier to guide the diffusion process. The noise estimation
function of these models can be summarized as follows

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt log fϕ(y|xt),

where fϕ(y|xt, t) is a trainable classifier.

Classifier-Free Guidance: Recent research [12] shows that without
the explicit classifier, we still can control the generation process by
carefully design the architecture of noise estimation network. Let c is
the input context then pθ(x|θ) unconditional denoising diffusion model
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Contextual diffusion II

can be parameterized through a score estimator ϵθ(xt, t) and the
conditional model pθ(x|c, θ) can be parameterized through ϵθ(xt, t, c).

∇xt log p(c|xt) = ∇xt log

(
p(xt|c)p(c)

p(xt)

)
= ∇xt log p(xt|c)−∇xt log p(xt)

= − 1√
1− ᾱt

(
ϵθ(xt, t, c)− ϵθ(xt, t)

)
ϵ̄θ(xt, t, c) = ϵθ(xt, t, c)−

√
1− ᾱt w∇xt log p(c|xt)

= ϵθ(xt, t, c) + w
(
ϵθ(xt, t, c)− ϵθ(xt, t)

)
= (w + 1)ϵθ(xt, t, c)− wϵθ(xt, t)
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A basic experiment from scratch

Problem: Given a string represented for a number, please generate the
image(s) of that number.
Dataset: MNIST
Context: The string of a number (Maximum string length is 5 characters)
Generation target: Image(s) of a number
Models: DDPM and DDIM with classifier-free guidance
Link: Colab Notebook
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Takeaway

Advantages: Generative modeling faces a trade-off between tractability and
flexibility. Tractable models are easy to evaluate and fit data inexpensively
but cannot efficiently capture complex data structures. Conversely, flexible
models can accommodate intricate data structures but are computationally
expensive to evaluate, train, or sample from. Diffusion models offer the
benefits of both tractability and flexibility by being both analytically
tractable and capable of accommodating arbitrary data structures.

Disadvantages: Diffusion models rely on a lengthy Markov chain of
diffusion steps to generate samples, which can result in significant time and
compute costs. While newer techniques have been introduced to expedite
this process, sampling from diffusion models is still slower than using GAN
models.
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Final words

- Thank you for your
attention -

Acknowledgements:
Lilian Weng’s blog [13] for detail formulas explainations

Contact me if you have any questions
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