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The fact that Science walks forward on two feet, namely theory and experiment...

Prof. Robert Millikan - Nobel Laureate 1923
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Graphs exist in many aspects

Social networks [Link] Mesh objects [Link] Molecules

Figure 1: Examples of existence of graphs in real life
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Subgraphs play an essential role in both theory and practical

Social networks Mesh objects Molecules

Figure 2: Examples of subgraph importance

Nguyen Quang Duc (HCMUT) Subgraph Isomorphism Prediction January 2025 6 / 81



Especially in drug design process
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Figure 3: Example of early screening process in drug design
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The problem of finding patterns

Question
Given a target graph and a pattern, how can we know whether the pattern exists in the target
graph and its mapping in an efficient time manner?
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Goal & Scope

Goal: Solving the problem of subgraph matching with explainability
1 Graph Learnable Multi-hop Attention Networks (GLeMa)
2 Theoretical Analysis and Justification
3 Multi-task Learning Framework

Scope:
Proposing a method for solving the problem of subgraph matching with explainability
Evaluation proposed method mainly on chemistry and bioinformatics domains
Final result: a theoretically substantiated GNN-based model
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Preliminaries

Labelled Undirected Connected Graph
A labeled undirected connected graph is a graph represented with a 3-tuple G = (V,E, l) where

1 V is a set of nodes,
2 E ⊆ [V ]2 is a set of edges (u, v), where u, v ∈ V

3 ∀v ∈ V, deg(v) ≥ 1

4 l : V → Σ is a labelling function and Σ is a set of node labels.
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Preliminaries

Labelled Subgraph Isomorphism
Given two labeled graphs G = (VG , EG , lG) and S = (VS , ES , lS), S is subgraph isomorphic to G
(denoted as S ⊆ G) if there exists a function f : VS → VG such that:

1 ∀v ∈ VS , lS(v) = lG(f(v)) and
2 ∀u, v ∈ VS , (u, v) ∈ ES =⇒ (f(u), f(v)) ∈ EG .

Induced Labelled Subgraph Isomorphism
Given two labeled graphs G = (VG , EG , lG) and S = (VS , ES , lS), S is induced subgraph
isomorphic to G (denoted as S ⊆id G) if and only if:

1 S ⊆ G and
2 ∀u, v ∈ VS , (u, v) /∈ ES =⇒ (f(u), f(v)) /∈ EG .
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Preliminaries

Figure 4: Examples of non-induced and induced subgraph isomorphism
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Problem Statement

In this thesis, we intend to solve two problems that are derived from the problem of induced
subgraph isomorphism.

Problem 1: Subgraph matching
Given a target graph T = (VT , ET , lT ) and a pattern P = (VP , EP , lP), both are labeled
connected graphs, the subgraph matching problem aims to determine whether P is induced
subgraph isomorphic to T or not.

Problem 2: Matching explanation
Let P = (VP , EP , lP) and T = (VT , ET , lT ) represent two graphs, where P is a known induced
subgraph of T . The matching explanation problem seeks to determine a bijective mapping
ϕ : VP → VT that accurately identifies the correspondence between the nodes of P and their
counterparts in T .
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Subgraph Isomorphism Algorithms

Non-induced settings: This setting holds significant utility in various aspects of data
management, including tasks like graph indexing, graph similarity search, and graph
retrieval1.

Induced settings: This setting has been proven to be NP-complete2. Various
algorithms345678 have been proposed focusing on generating effective matching orders and
designing robust filtering strategies to reduce the number of candidates in the data graph.

1Roy et al., “Interpretable Neural Subgraph Matching for Graph Retrieval”.
2Garey and Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness.
3Shang et al., “Taming verification hardness: an efficient algorithm for testing subgraph isomorphism”.
4He and Singh, “Graphs-at-a-time: query language and access methods for graph databases”.
5W.-S. Han, J. Lee, and J.-H. Lee, “TurboISO: Towards ultrafast and robust subgraph isomorphism search in large graph databases”.
6Bi et al., “Efficient Subgraph Matching by Postponing Cartesian Products”.
7Bhattarai, H. Liu, and Huang, “CECI: Compact Embedding Cluster Index for Scalable Subgraph Matching”.
8M. Han et al., “Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together”.
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Neural subgraph isomorphism and explanation

Modern approaches for subgraph isomorphism and explanation utilize Graph Neural Networks:
The initial work9 attempted to assess the feasibility of Graph Neural Networks in small
subgraph matching.
With recent advancements in GNNs101112, contemporary subgraph matching
techniques131415 have achieved state-of-the-art results in terms of efficiency.
Recent studies have utilized the interpretability of GNNs161718 through a model-intrinsic
perspective.

9Scarselli et al., “The Graph Neural Network Model”.
10Kipf and Welling, “Semi-Supervised Classification with Graph Convolutional Networks”.
11Hamilton, Ying, and Leskovec, “Inductive representation learning on large graphs”.
12K. Xu et al., “How Powerful are Graph Neural Networks?”
13Bai et al., “Convolutional set matching for graph similarity”.
14Zhang and W. S. Lee, “Deep Graphical Feature Learning for the Feature Matching Problem”.
15Ying et al., “Neural Subgraph Matching”.
16Yuan et al., “XGNN: Towards Model-Level Explanations of Graph Neural Networks”.
17Vu and Thai, “PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks”.
18Wu et al., “Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph Matching”.
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Neural subgraph isomorphism and explanation

NeuralMatch19, a cutting-edge subgraph matching algorithm employing a specialized graph
neural network architecture.

Figure 5: NeuralMatch architecture19

19Ying et al., “Neural Subgraph Matching”.
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Neural subgraph isomorphism and explanation

DualMP20, one of state-of-the-art approaches for performing subgraph counting and matching.
This method leverages Dual Message Passing Neural Networks (DMPNNs) to learn both node
and edge representations simultaneously in an aligned space through an efficient asynchronous
update mechanism.

20X. Liu and Song, “Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching”.
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Conventional Graph Neural Networks

Figure 6: Common Graph Neural Networks architecture
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Approach Overview
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Figure 7: xNeuSM architecture is inspired by the study of Lim et al.21

21Lim et al., “Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation”.
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Input Representation

Suppose that P = {VP , EP , lP} and the target as T = {VT , ET , lT } where V,E are the sets of
nodes and edges respectively; l : V → TV is the labelling function.

X = {x⃗1, x⃗2, . . . , x⃗|VP |, x⃗|VP |+1, . . . , x⃗|VP |+|VT |} with x⃗i ∈ R2|TV | (1)

Ain
ij =


1 if there is an undirected edge or

a directed edge that connects j to i

0 otherwise

(2)

Acr
ij =


Ain

ij if i, j ∈ P or i, j ∈ T
1 if l(i) = l(j) and i ∈ P and j ∈ T ,

or if l(i) = l(j) and i ∈ T and j ∈ P
0 otherwise

(3)
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Graph Multi-hop Attention layer

Assuming that we are applying this layer on an abstract graph G = {V,E, l}, we present this
graph with (X,A) where X ∈ R|V |×F is the set of node features and E is the set of edges.

Xh = {x⃗1, x⃗2, . . . , x⃗|V |}, x⃗i ∈ RF (4)

Aij =

{
1 if there is an edge that connects j to i

0 otherwise
(5)

Then, we project the input features into embedding space and calculate 1-hop attention among
all nodes using Luong’s Attention.

X′ = {x⃗′i = W hx⃗i}|V |
i=1, x⃗

′
i ∈ RF ′

(6)

eij =

{
δ(x⃗′Ti W ex⃗

′
j) a directed edge j to i,

δ(x⃗′Ti W ex⃗
′
j + x⃗′Tj W ex⃗

′
i) an undirected edge j to i,

(7)

A(1) = {a(1)ij =
exp(eij)∑

n∈Ni
exp(ein)

Aij |i, j = 1, |V |} (8)
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Graph Multi-hop Attention layer

The attention diffusion matrix can be calculated by the weighted sum of all k-hop attention
matrix with attention decay factors θk.{

(A(1))0 = I

A =
∑∞

k=0 θk(A(1))k where
∑∞

k=0 θk = 1 and θk > 0
(9)

The output of GMA layer is a projection of the combination H-head attention node features.

X̂ =

(
Hn

h=1

δ
(
AhX

′
h

))
W o with W o ∈ RHF ′×F ′

. (10)
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Learnable multi-hop attention mechanism

There are two main problems22 associated with computing exact attention diffusion matrix A:
1 The elevated computational intricacies involved in computing A due to matrix multiplication.
2 The judicious selection of the suitable values for θk, which significantly influences the

augmentation or attenuation of the model performance.

=⇒ Approximate, learnable multi-hop attention mechanism

22Gasteiger, Bojchevski, and Günnemann, “Predict then Propagate: Graph Neural Networks meet Personalized PageRank”.
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Learnable Multi-hop Attention Mechanism

Reducing multi-hop attention matrix computation complexity Following the methodology
outlined in the previous work23, we adopt the geometric distribution to determine θk, wherein
θk = α(1− α)k, α ∈ (0, 1) represents the teleport probability. The approximation for AX′ is
achieved as follows. {

Z(0) = X′

Z(k) = (1− α)A(1)Z(k−1) + αZ(0), k = 1,K
(11)

Proposition 1

limK→∞Z(K) = AX′

This proposition was proven in (Wang et al., 2020).

23Wang et al., “Multi-hop Attention Graph Neural Networks”.
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Learnable Multi-hop Attention Mechanism

Reducing multi-hop attention matrix computation complexity

Proposition (Proposition 1)

limK→∞Z(K) = AX′

However, there is a tradeoff between the approximation error and computing resource.
Question: How much large is K?
Question: How much is the approximate error of Z(K)?

In this thesis, we propose the theoretical evidence for A approximation error.

Proposition 2

The average approximate error of each element in A(K) = Z(K)X′−1 is bound by (1− α)K+1
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Learnable Multi-hop Attention Mechanism

Learning distinct teleport probabilities for nodes
Personalized PageRank (PPR)24 which reveals the importance of each node
The original work of GAT has proved that the attention matrix in GAT can be viewed as the
transition matrix in PPR25 but it used the same teleport probability for all nodes, which
limits the power of PPR theoretically.

=⇒ Leveraging the capabilities of PPR, we propose a novel approach that involves the
customization of teleport probabilities for individual nodes, denoted as β = {βv}|V |

v=1.

24Lofgren, “Efficient Algorithms for Personalized PageRank”.
25Wang et al., “Multi-hop Attention Graph Neural Networks”.
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Learnable Multi-hop Attention Mechanism

Learning distinct teleport probabilities for nodes Inspired by Gated Recurrent Units26, we
devise a method wherein the network autonomously learns the teleport probabilities via a
straightforward linear transformation.

β = σ((X′||A(1)X′)W β + b), (12)

Employing distinct teleport probabilities for each node results in modifications to Equation 9.
These alterations encompass θkj = βj(1− βj)

k,
∑∞

k=0 θkj = 1 for j ∈ 1, N , and θkj > 0.

Proposition 3

limK→∞Z
(K)
β = AηX

′

26Cho et al., “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation”.
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Learnable multi-hop attention mechanism

Learning distinct teleport probabilities for nodes

Algorithm 1: Learnable Multi-hop Attention

Input : 1-hop attention matrix A(1)

Node feature matrix X′

Number of approximate hops K
Output : Diffused node feature matrix X̂

1 Z(0) ←X′

2 β ← σ((X′||A(1)X′)W β + b)
3 for k in Range(1 . . .K) do
4 Z(k) = (1− β)A(1)Z(k−1) + βZ(0)

5 end
6 X̂ ← Z(K)
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Graph Learnable Multi-hop Attention Networks

With the GLeMA layer, using the input of triple (X,Ain,Acr), we can compute higher
representation for the query and target graphs as follows.

X0 = X

X̂
l

in = GLeMAl(X
l−1,Ain), l = 1, LG

X̂
l

cr = GLeMAl(X
l−1,Acr), l = 1, LG

X l = X̂
l

cr − X̂
l

in, l = 1, LG

(13)

The node features at the lth layer are computed by taking the difference between the inter-graph
features and the intra-graph features from the previous (l− 1)th layer. This learning of disparities
between inter-graph and intra-graph features enhances the signal for verifying subgraph
isomorphism.
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Subgraph Matching Task

The methodology for computing the representation vector is elucidated in Equation 14. In this
equation, all pattern node feature vectors are aggregated to form the representation for our input.

x0repr =
1

|VP |
∑
i∈VP

xLG
i (14)

Equation 15 provides the mathematical formulations underpinning the classifier of subgraph
matching. {

xirepr = δ(W ix
i−1
repr + bi), i = 1, LFC − 1

ŷ = σ(W yx
LFC−1
repr + by)

(15)
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Matching Explanation Task

The mapping of nodes between the query and target graph is established if the mapping
probability is larger than a predefined threshold ϵ.

M ={(i, j, pij)|pij ≥ ϵ},where i ∈ VP , j ∈ VT and

pij =
1

2

(
(a

(1)
ij )LG + (a

(1)
ji )

LG

)
.

(16)

In (16),M is the set of mapping nodes between the pattern and target graph; pij which is
computed by average of 1-hop attention coefficients ((a

(1)
ij )LG , (a

(1)
ji )

LG) is the mapping
probability between pattern ith node and target jth node.
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Optimization Objective

Lsm is a binary cross-entropy loss designed to assess the model capacity to predict subgraph
isomorphism accurately.
Lme is an attention-based loss, aimed at reinforcing the attention coefficients between
nodes i and j (i ∈ VP , j ∈ VT ) that correspond to actual mappings, while simultaneously
diminishing the coefficients for node pairs sharing the same label (represented as
m ∈ VP , n ∈ VT , l(m) = l(n)) but lacking a mapping relationship.
L is the final objective function where λ is an hyperparameter.


Lsm = − 1

|D|
∑|D|

k=1 yk · log(ŷk) + (1− yk) · log(1− ŷk)

Lme = 1
|D|
∑|D|

k=1

∑
exp

(
−
(
a
(1)(LG)
ij

)
k

)
∑

exp
(
−
(
a
(1)(LG)
mn

)
k

)
−∑

exp
(
−
(
a
(1)(LG)
ij

)
k

)
+1

L = Lsm + λLme

(17)
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Datasets

We assess the performance of our framework across a diverse range of real datasets encompassing
various domains, including bioinformatics, chemistry, computer vision, and social networks.

Table 1: Statistics of real datasets

Domain D |VT | |ET | deg |D| |Σ|
Bioinformatics KKI 26.96 48.42 3.19 83 190

Chemistry COX2 41.22 43.45 2.10 467 8
Chemistry COX2_MD 26.28 335.12 25.27 303 7
Chemistry DHFR 42.43 44.54 2.10 756 9

Social networks DBLP-v1 10.48 19.65 3.43 19456 39
Computer vision MSRC-21 77.52 198.32 5.10 563 22
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Baselines

Exact approach We utilize seven distinct approaches to compare with xNeuSM, including:
VF327, TurboISO28, CFL29, CECI30, QuickSI31, DAF32, GraphQL33.
Approximate approach We compare our approach with NeuralMatch34 and DualMP35.

27Carletti et al., “Introducing VF3: A New Algorithm for Subgraph Isomorphism”.
28W.-S. Han, J. Lee, and J.-H. Lee, “TurboISO: Towards ultrafast and robust subgraph isomorphism search in large graph databases”.
29Bi et al., “Efficient Subgraph Matching by Postponing Cartesian Products”.
30Bhattarai, H. Liu, and Huang, “CECI: Compact Embedding Cluster Index for Scalable Subgraph Matching”.
31Shang et al., “Taming verification hardness: an efficient algorithm for testing subgraph isomorphism”.
32M. Han et al., “Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together”.
33He and Singh, “Graphs-at-a-time: query language and access methods for graph databases”.
34Ying et al., “Neural Subgraph Matching”.
35X. Liu and Song, “Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching”.
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Metrics

Subgraph matching task
Execution time
Accuracy, ROC AUC, PR AUC, F1 score

Matching explanation task
Average Top-K Accuracy

TopK =
1

|Dtest|
∑

(T ,P)∈Dtest

 1

|VP |
∑
i∈VP

AccKi


Mean Reciprocal Rank

MRR =
1

|Dtest|
∑

(T ,P)∈Dtest

 1

|VP |
∑
i∈VP

1

ranki


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End2end subgraph isomorphism - Runtime
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Figure 8: Execution time on subgraph matching task.
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End2end subgraph isomorphism - Accuracy
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Figure 9: Performance comparison between Neural Match and xNeuSM
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Confidence assessment

By elevating the output probability threshold for the subgraph matching task, we demonstrate
that our model maintains high performance levels.
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Figure 10: Relation between confidence threshold and model performance
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Scalability

We evaluated the performance of all techniques using the above datasets with different levels of
graph density, ranging from sparse to dense graphs.

Vary D(P): We divided queries into two subsets based on their average degree. The first
subset, labeled “dense”, included queries with a degree of three or higher. The second
subset, labeled “sparse”, encompassed queries with a degree less than 3.
Vary |VP |: We partitioned the query set into four groups based on query size thresholds:
|VP | ≤ 20, 20 < |VP | ≤ 40, 40 < |VP | ≤ 60, and 60 < |VP |.
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Scalability
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Figure 11: Execution time on KKI dataset

Nguyen Quang Duc (HCMUT) Subgraph Isomorphism Prediction January 2025 44 / 81



Scalability
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Figure 12: Execution time on COX2 and COX2_MD dataset
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Scalability
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Figure 13: Execution time on DHFR dataset
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Scalability
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Figure 14: Execution time on DBLP-v1 dataset

Nguyen Quang Duc (HCMUT) Subgraph Isomorphism Prediction January 2025 47 / 81



Scalability
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Figure 15: Execution time on MSRC-21 dataset
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Matching explanation

Quantitative analysis: It is important to note that this task is exclusively applicable to known
isomorphism pairs of (pattern, target). Non-isomorphic cases were deliberately excluded from our
testing, as they may not be representative of real-world use cases.

Table 2: Performance of in subgraph aligning task

Dataset Top-1↑ Top-5↑ Top-10↑ MRR↑
KKI 0.9978 0.9999 0.9999 0.9987

COX2 0.2513 0.6259 0.8395 0.4273
COX2_MD 0.9481 0.9828 0.9881 0.9630

DHFR 0.9999 0.9999 0.9999 0.9999
DBLP-v1 0.9994 0.9999 0.9999 0.9996
MSRC-21 0.9994 0.9999 0.9999 0.9999
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Matching explanation

Qualitative analysis
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(a) Subgraph isomorphism case. From left to right: The target
graph and the isomorphic pattern graph

54

87

154
129

155

156

19

72

152
174

74

167 129

54
154

80

174

71
152

(b) Subgraph non-isomorphism case. From left to right: The target
graph and the non-isomorphic pattern graph

Figure 16: Examples of isomorphism and non-isomorphism cases resulted from our model in the KKI
dataset
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Ablation study

Model Architecture:
cross-only: This configuration exclusively employs interconnections between the graph and
subgraph.
intra-only: This configuration solely relies on intra-connections within the graph and
subgraph.
both: This configuration combines both intra- and inter-connections of the graph and
subgraph.

Multi-hop Mechanism:
1-hop: Here, we replace the GLeMA layer with a standard 1-hop GAT layer.
increasing-hop: This configuration employs the GLeMA with a continuously increasing
number of hops in the deeper layers (K(LG) = LG).
interleaved-hop: This configuration uses the GLeMA with an interleaving-increasing
number of hops. In this study, we use K(LG) = 2LG − 1.

Attention head: We modify the base xNeuSM with 2 and 4 attention heads. These settings
are used to understand the relationship between increasing model complexity (by increasing
attention heads) and model performance.
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Ablation study

Table 3: Impact of xNeuSM components on KKI

Model Time↓ ROC↑ PR↑ F1↑ Acc↑ MRR↑
Cross-only 1-hop 0.56 0.979 0.959 0.979 0.979 0.999
Cross-only increasing-hop 0.60 0.977 0.956 0.977 0.977 0.996
Cross-only interleaved-hop 0.42 0.978 0.958 0.978 0.978 0.997
Intra-only 1-hop 0.49 0.611 0.578 0.485 0.612 −
Intra-only increasing-hop 0.40 0.628 0.593 0.515 0.628 −
Intra-only interleaved-hop 0.42 0.669 0.626 0.602 0.670 −
Both 1-hop 0.62 0.968 0.939 0.968 0.968 0.999
Both increasing-hop 0.70 0.980 0.963 0.980 0.980 0.999
Both interleaved-hop 0.51 0.979 0.964 0.980 0.979 0.998
With 2 attention heads 0.86 0.956 0.935 0.954 0.957 0.998
With 4 attention heads 1.19 0.938 0.923 0.936 0.937 0.999
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Ablation study

Table 4: Impact of xNeuSM components on COX2

Model Time↓ ROC↑ PR↑ F1↑ Acc↑ MRR↑
Cross-only 1-hop 0.12 0.967 0.946 0.968 0.967 0.306
Cross-only increasing-hop 0.12 0.962 0.931 0.964 0.962 0.191
Cross-only interleaved-hop 0.11 0.974 0.953 0.974 0.974 0.203
Intra-only 1-hop 0.11 0.472 0.498 0.007 0.472 −
Intra-only increasing-hop 0.11 0.457 0.499 0.003 0.458 −
Intra-only interleaved-hop 0.12 0.491 0.495 0.180 0.491 −
Both 1-hop 0.12 0.962 0.950 0.961 0.962 0.177
Both increasing-hop 0.39 0.972 0.961 0.972 0.972 0.298
Both interleaved-hop 0.38 0.983 0.974 0.984 0.983 0.427
With 2 attention heads 0.49 0.954 0.925 0.955 0.954 0.298
With 4 attention heads 0.63 0.907 0.892 0.900 0.907 0.215
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Ablation study

Table 5: Impact of xNeuSM components on DBLP-v1

Model Time↓ ROC↑ PR↑ F1↑ Acc↑ MRR↑
Cross-only 1-hop 0.07 0.996 0.995 0.996 0.996 0.996
Cross-only increasing-hop 0.09 0.980 0.964 0.981 0.980 0.983
Cross-only interleaved-hop 0.08 0.980 0.963 0.981 0.980 0.985
Intra-only 1-hop 0.09 0.640 0.598 0.579 0.640 −
Intra-only increasing-hop 0.13 0.643 0.593 0.634 0.643 −
Intra-only interleaved-hop 0.09 0.618 0.576 0.573 0.618 −
Both 1-hop 0.09 0.996 0.992 0.996 0.996 0.995
Both increasing-hop 0.10 0.918 0.910 0.912 0.918 0.989
Both interleaved-hop 0.13 0.996 0.995 0.997 0.996 0.999
With 2 attention heads 0.17 0.976 0.964 0.975 0.976 0.999
With 4 attention heads 0.28 0.986 0.984 0.985 0.986 0.999
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Generalization

We additionally conduct experiments to demonstrate the generalization capabilities of xNeuSM in
out-of-distribution settings. In these settings, we utilize the model trained on one dataset to test
on the others, with the same datasets as in the previous experiments.

Table 6: ROC AUC of out-distribution settings. For each dataset, the model trained on a different
dataset that achieved the highest ROC AUC is in [italic].

Train
Test KKI COX2 COX2_MD DHFR DBLP-v1 MSRC-21

KKI 0.979 0.634 0.499 0 .970 0 .923 0 .928

COX2 0.500 0.983 0.500 0.500 0.501 0.500
COX2_MD 0.534 0.412 0.986 0.499 0.565 0.497
DHFR 0.547 0.797 0.499 0.998 0.758 0.668
DBLP-v1 0.502 0 .883 0.491 0.689 0.996 0.505
MSRC-21 0 .863 0.539 0 .604 0.961 0.712 0.997
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Generalization

Observations:
A model trained on a dataset with a large |Σ| exhibits generalization to datasets with
smaller |Σ| (trained on KKI and tested on DHFR, DBLP-v1, MSRC-21).
A model trained on a dataset with a lower incidence of duplicated node graphs exhibits poor
generalization to datasets characterized by a higher frequency of duplicated node graphs (no
model trained on other datasets well generalizes to COX2, COX2_MD).
Furthermore, a model trained on dense graphs can generalize to datasets with sparser
graphs (trained on MSRC-21 and tested on DHFR, DBLP-v1).
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Directed subgraph matching

We conducted an assessment of our proposed methodology using directed graphs. We effectuated
the transformation of all edges within these datasets into directed edges, wherein we designated
the tail node as the one with a smaller label and the head node as the one with a larger label.

Table 7: Performance of xNeuSM directed subgraph matching and matching explanation

Dataset ROC↑ PR↑ F1↑ Acc↑ Top-1↑ Top-2↑ Top-10↑ MRR↑
KKI 0.975 0.953 0.975 0.975 0.996 0.999 0.999 0.998
COX2 0.947 0.908 0.949 0.947 0.103 0.396 0.640 0.261
COX2_MD 0.989 0.979 0.989 0.989 0.999 0.999 0.999 0.999
DHFR 0.969 0.944 0.970 0.969 0.999 0.999 0.999 0.999
DBLP-v1 0.960 0.940 0.960 0.960 0.745 0.996 0.999 0.866
MSRC-21 0.988 0.977 0.988 0.988 0.999 0.999 0.999 0.999

Nguyen Quang Duc (HCMUT) Subgraph Isomorphism Prediction January 2025 57 / 81



Directed subgraph matching

We conducted an assessment of our proposed methodology using directed graphs. We effectuated
the transformation of all edges within these datasets into directed edges, wherein we designated
the tail node as the one with a smaller label and the head node as the one with a larger label.

Table 7: Performance of xNeuSM directed subgraph matching and matching explanation

Dataset ROC↑ PR↑ F1↑ Acc↑ Top-1↑ Top-2↑ Top-10↑ MRR↑
KKI 0.975 0.953 0.975 0.975 0.996 0.999 0.999 0.998
COX2 0.947 0.908 0.949 0.947 0.103 0.396 0.640 0.261
COX2_MD 0.989 0.979 0.989 0.989 0.999 0.999 0.999 0.999
DHFR 0.969 0.944 0.970 0.969 0.999 0.999 0.999 0.999
DBLP-v1 0.960 0.940 0.960 0.960 0.745 0.996 0.999 0.866
MSRC-21 0.988 0.977 0.988 0.988 0.999 0.999 0.999 0.999

Nguyen Quang Duc (HCMUT) Subgraph Isomorphism Prediction January 2025 57 / 81



Table of Contents

1 Introduction

2 Preliminaries and Problem Statement

3 Related Works

4 Proposed Method

5 Experiments and Results

6 Conclusion

Nguyen Quang Duc (HCMUT) Subgraph Isomorphism Prediction January 2025 58 / 81



Summary

This thesis proposes a framework called xNeuSM for explainable neural subgraph matching
using novel Graph Learnable Multi-hop Attention Networks.
xNeuSM represents the structural attributes of graphs as adjacency matrices to explicitly
capture cross-graph features between the query and target graphs.
The learnable muti-hop attention mechanism is introduced to solve limitations of previous
multi-hop attention one and its effectiveness of theoretically verified.
The framework optimizes subgraph search measures through end-to-end neural networks
while concurrently learning node alignments akin to classical combinatorial methods.
Empirically, xNeuSM has the fastest execution time over baseline techniques, with
comparable accuracy and explicit explainability.
Published two papers including one at IJCNN 2023 conference(B-ranked)36 and IEEE Access
(Q1 journal)37.

36T. T. Nguyen et al., “10X Faster Subgraph Matching: Dual Matching Networks with Interleaved Diffusion Attention”.
37D. Q. Nguyen et al., “Explainable Neural Subgraph Matching With Learnable Multi-Hop Attention”.
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Future Developments

xNeuSM can be adapted for many other problems:
Inexact subgraph matching, partial subgraph matching, geometric subgraph isomorphism,
etc.
Predicting molecule function, finding patterns in molecules, and other applications in the
drug discovery process
About the model: incorporating edge labels, utilizing more robust GNN modules, etc.
Develop an efficient node-matching strategy for cases with a high number of similar nodes.
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Preliminaries

Labelled Directed Connected Graph
A labeled directed connected graph is a graph represented with a 3-tuple G = (V,E, l) where

1 V is a set of nodes,
2 E ⊆ [V ]2 is a set of edges (u, v), where u is tail node, v is head node and u, v ∈ V

3 ∀v ∈ V, (degin(v) ≥ 1) ∨ (degout(v) ≥ 1)

4 l : V → Σ is a labelling function and Σ is a set of node labels



Preliminaries

Non-Induced Labelled Subgraph
Let G = (VG , EG , lG) and S = (VS , ES , lS) be two labelled graphs. S is a non-induced subgraph
of G (denoted as S ⊆ni G) if and only if:

1 S ⊆ G and
2 ∃u, v ∈ VS , (u, v) /∈ ES ∧ (u, v) ∈ EG .

Non-Induced Subgraph Isomorphism
Given two graphs P = (VP , EP , lP) and T = (VT , ET , lT ), P is considered as non-induced
subgraph isomorphic to T if there exists S = (VS , ES , lS) such that:

1 S ⊆ni T and
2 P ∼= S.
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Subgraph Isomorphism Algorithms

There are two distinct settings for subgraph isomorphism algorithms
1 Non-induced settings: The pattern can be a partial embedding of a subgraph in the target

graph.
∃v1, v2 ∈ VP : (v1, v2) /∈ EP ∧ (f(v1), f(v2)) ∈ ET

2 Induced settings: The pattern is a subgraph in the target graph.

∀v1, v2 ∈ VP : (v1, v2) /∈ EP =⇒ (f(v1), f(v2)) /∈ ET



Design Principles & Challenges

To ensure the effectiveness of the graph neural network architecture, we consider three crucial
properties:

(R1) Explanability. A proficient subgraph matching framework must identify pattern
presence and provide approximate “alignment witnesses”.

(R2) High-order Dependency. Recent studies indicate complex systems often exhibit
dependencies as high as fifth-order38, necessitating scalable solutions for subgraph matching.
However, elevating dependency orders can burden the model computationally.
(R3) Multi-task with Configurability. Certain scenarios prioritize closely matched
patterns over exact matches, such as in vaccine development39. Configuring the model to
prioritize such scenarios aligns better with human intuition40. Designing a neural model
seamlessly accommodating multiple objectives for solving a multi-task problem remains a
significant architectural challenge.

38J. Xu, Wickramarathne, and Chawla, “Representing higher-order dependencies in networks”.
39Sussman et al., “Matched Filters for Noisy Induced Subgraph Detection”.
40Jiménez-Luna, Grisoni, and Schneider, “Drug discovery with explainable artificial intelligence”.
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Approach Overview

Our approach contains three main stages:
1 Input representation: Representing the pattern and target graph in matrices
2 Feature extraction: Utilizing Graph Learnable Multi-hop Attention layer to form high-level

node features
3 Task aggregation and intepretation: Performing subgraph matching and matching

explaination tasks concurrently



Approach Overview

Algorithm 2: xNeuSM Framework

Input : Node feature matrix X; Intra-graph adjacency matrix Ain; Cross-graph adjacency
matrix Acr

Output : Prediction ŷ; Weighted mapping matrix P
1 X0 ←X
2 for l in Range(1 . . . LG) do

3 X̂
l

in ← GLeMal(X l−1,Ain)

4 X̂
l

cr ← GLeMal(X l−1,Acr)

5 X l ← X̂
l

cr − X̂
l

in

6 end
7 (A(1))LG ← ExtractAttnMat(GLeMaLG

,X l−1,Acr)

8 x0repr ← 1
|VP |

∑
i∈VP

xLG
i , where xLG

i ⊂XLG

9 for l in Range(1 . . . LFC − 1) do
10 xlrepr ← δ(W lx

l−1
repr + bl)

11 end
12 ŷ ← σ(W yx

LFC−1
repr + by)

13 P ←
{
pij =

1
2

(
(a

(1)
ij )LG + (a

(1)
ji )

LG

)}
, where i ∈ VP , j ∈ VT , and (a

(1)
ij )LG ∈ (A(1))LG



Learnable Multi-hop Attention Mechanism

Proposition 2

The average approximate error of each element in A(K) = Z(K)X′−1 is bound by (1− a)K+1

Proof:
By Proposition 1, we can derive:

lim
K→∞

Z(K) = AX′

lim
K→∞

Z(K)(X′)−1 = A.
(18)

Let A(K) = Z(K)(X′)−1 be the approximated attention diffusion matrix at K-hop. We will
show that the error Err(A−A(K)) ≤ (1− α)K+1, where α is the teleport probability and K is
the number of hops.
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Learnable Multi-hop Attention Mechanism

Firstly, we decompose Z(K) as following.

Z(K) = (1− α)K(A(1))KX′ + α(1− α)K−1(A(1))K−1X′

+ · · ·+ α(1− α)(A(1))X′ + αX′ (19)

Then, we obtain:

Z(K)(X′)−1 = (1− α)K(A(1))K + α(1− α)K−1(A(1))K−1

+ · · ·+ α(1− α)(A(1)) + α

= (1− α)K(A(1))K +
K−1∑
k=0

α(1− α)k(A(1))k

(20)
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Learnable Multi-hop Attention Mechanism

Now, let us consider the difference between attention diffusion matrix A and its approximate
form Z(K)(X′)−1.

A−A(K) = A−Z(K)(X′)−1

=
∞∑
k=0

α(1− α)k(A(1))k − (1− α)K(A(1))K −
K−1∑
k=0

α(1− α)k(A(1))k

=

∞∑
k=K

α(1− α)k(A(1))k − (1− α)K(A(1))K

≤
∞∑

k=K

α(1− α)k(A(1))k − α(1− α)K(A(1))K by α, a
(1)
ij ∈ (0, 1)

≤
∞∑

k=K+1

α(1− α)k(A(1))k

(21)
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Learnable Multi-hop Attention Mechanism
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Learnable Multi-hop Attention Mechanism

We also have a
(1)
ij ∈ (0, 1) so that

(A(1))k ≤ (A(1))k−1. (22)

As a consequence, we have:
(A(1))k ≤ A(1),∀k ≥ 1 (23)

Using (23), equation (21) can be derived as follows:

E = A−A(K) ≤
( ∞∑

k=K+1

α(1− α)k

)
A(1) (24)
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Learnable Multi-hop Attention Mechanism

It is easy to observe that E ∈ R|V |×|V |. Then we can define the average difference between the
exact and approximate attention diffusion matrix as

Err(A−A(K)) =
1

|V |2
∑
i,j

Eij

≤ 1

|V |2
∑
i,j

(( ∞∑
k=K+1

α(1− α)k

)
a
(1)
ij

)

≤
∞∑

k=K+1

α(1− α)k by a
(1)
ij ∈ (0, 1)

≤ α
∞∑

k=K+1

(1− α)k ≤ α
(1− α)K+1

1− (1− α)

≤ (1− α)K+1

(25)

Thus, the Proposition 2 is proven.
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Figure 17: Maximal approximation error of each attention coefficient



Learnable multi-hop attention mechanism

Proposition 3

limK→∞Z
(K)
β = AηX

′

Proof:
With βv ∈ (0, 1),∀v ∈ V :

(ηv)k = βv(1− βv)
k > 0 (26)

This results in the important property:

∀v ∈ V,
∞∑
k=0

(ηv)k =
∞∑
k=0

βv(1− βv)
k =

βv
1− (1− βv)

= 1. (27)
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Learnable multi-hop attention mechanism

Let ηk = {(ηv)k}|V |
v=1 be the attention decay vector at the k-th hop. With the property in (27),

we can generalize equation (9) as follows:{
(A(1))0 = I

Aη =
∑∞

k=0 ηk(A(1))k.
(28)

Then, we can approximate AηX
′ as:{

Z(0) = X′

Z
(k)
β = (⃗1− β)A(1)Z(k−1) + βZ(0), k = 1,K

(29)
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Learnable multi-hop attention mechanism

Firstly, we decompose all elements of Z(k)
β :

Z
(k)
β = (⃗1− β)A(1) . . .︸ ︷︷ ︸

k times

X′ + (⃗1− β)A(1) . . .︸ ︷︷ ︸
k−1 times

βX′

+ (⃗1− β)A(1) . . .︸ ︷︷ ︸
k−2 times

βX′ + · · ·+ (⃗1− β)A(1)βX′ + βX′
(30)

We also have:

AηX
′ =

( ∞∑
k=0

ηk(A(1))k

)
X′

= η0X
′ + η1A(1)X′ + η2(A(1))2X′ + . . .

= βX′ + β(⃗1− β)A(1)X′ + β(⃗1− β)2(A(1))2X′ + . . .

(31)
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Learnable multi-hop attention mechanism

To prove Proposition 3, we need to prove these lemmas.

Lemma 1

(⃗1− β)A(1) . . .︸ ︷︷ ︸
k times

βX′ = β(⃗1− β)k(A(1))kX′

and

Lemma 2

lim
k→∞

(⃗1− β)A(1) . . .︸ ︷︷ ︸
k times

X′ = 0⃗.
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Lemma 2

limk→∞ (⃗1− β)A(1) . . .︸ ︷︷ ︸
k times

X′ = 0⃗.

Proof:
Because βv ∈ (0, 1), it follows that (1− βv) ∈ (0, 1). This implies that:

lim
k→∞

(1− βv)
k = 0.

We also have:
(⃗1− β)k = {(1− βv)

k}|V |
v=1, (34)

so that
lim
k→∞

(⃗1− β)k = { lim
k→∞

(1− βv)
k}|V |

v=1 = 0⃗. (35)
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With Lemma 1 and (35), we can conclude:

lim
k→∞

(⃗1− β)A(1) . . .︸ ︷︷ ︸
k times

X′ = lim
k→∞

(⃗1− β)k(A(1))kX′

= ( lim
k→∞

(⃗1− β)k)( lim
k→∞

(A(1))kX′)

= 0⃗( lim
k→∞

(A(1))kX′)

= O

(36)
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By proving Lemma 1 and Lemma 2, we can prove the Proposition 3 as follows.

lim
k→∞

Z
(k)
β = lim

k→∞

[
(⃗1− β)A(1) . . .︸ ︷︷ ︸

k times

X′
]

+ lim
k→∞

[
(⃗1− β)A(1) . . .︸ ︷︷ ︸

k−1 times

βX′ + · · ·+ (⃗1− β)A(1)βX′ + βX′
]

= O + lim
k→∞

[
β(⃗1− β)k−1(A(1))k−1X′ + · · ·+ β(⃗1− β)A(1)X′ + βX′

]
= lim

k→∞

[
ηk−1(A(1))k−1X′ + · · ·+ η1A(1)X′ + η0X

′
]

= lim
k→∞

[(
k−1∑
k=0

ηk(A(1))k

)
X′

]

= AηX
′ as Aη =

∞∑
k=0

ηk(A(1))k in (28).

(37)
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