

MASTER THESIS

Optimizing subgraph isomorphism prediction models with application orientation to the drug design process

Supervisor: *Assoc. Prof.* Quan Thanh Tho Student: Nguyen Quang Duc - 2270664

Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology Vietnam National University Ho Chi Minh City

January 15^{th} 2025

VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

The fact that Science walks forward on two feet, namely theory and experiment...

Prof. Robert Millikan - Nobel Laureate 1923

-

Introduction **Preliminaries and Problem Statement** 2 **Related Works** 3 **Proposed Method** 4 **Experiments and Results** 5 Conclusion 6

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

-

Graphs exist in many aspects

Subgraphs play an essential role in both theory and practical

Especially in drug design process

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

January 2025

The problem of finding patterns

Question

Given a target graph and a pattern, how can we know whether the pattern exists in the target graph and its mapping in an efficient time manner?

Goal: Solving the problem of subgraph matching with explainability

- Graph Learnable Multi-hop Attention Networks (GLeMa)
- Theoretical Analysis and Justification
- Multi-task Learning Framework

Goal: Solving the problem of subgraph matching with explainability

- Graph Learnable Multi-hop Attention Networks (GLeMa)
- Theoretical Analysis and Justification
- Multi-task Learning Framework

Scope:

Proposing a method for solving the problem of subgraph matching with explainability
 Evaluation proposed method mainly on chemistry and bioinformatics domains
 Final result: a theoretically substantiated GNN-based model

Nguyen Quang Duc (HCMUT)

Labelled Undirected Connected Graph

A labeled undirected connected graph is a graph represented with a 3-tuple $\mathcal{G}=(V,E,l)$ where

- \bigcirc V is a set of nodes,
- 2 $E \subseteq [V]^2$ is a set of edges (u, v), where $u, v \in V$
- $\forall v \in V, \deg(v) \ge 1$
- $\ \, {\bf 0} \ \, l:V\to \Sigma \ \, {\rm is \ a \ \, labelling \ \, function \ \, and \ \, \Sigma \ \, {\rm is \ a \ set \ of \ node \ \, labels.}$

Labelled Subgraph Isomorphism

Given two labeled graphs $\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}}, l_{\mathcal{G}})$ and $\mathcal{S} = (V_{\mathcal{S}}, E_{\mathcal{S}}, l_{\mathcal{S}})$, \mathcal{S} is subgraph isomorphic to \mathcal{G} (denoted as $\mathcal{S} \subseteq \mathcal{G}$) if there exists a function $f : V_{\mathcal{S}} \to V_{\mathcal{G}}$ such that:

 $\textcircled{0} \ \forall v \in V_{\mathcal{S}}, l_{\mathcal{S}}(v) = l_{\mathcal{G}}(f(v)) \text{ and }$

$$\forall u, v \in V_{\mathcal{S}}, (u, v) \in E_{\mathcal{S}} \implies (f(u), f(v)) \in E_{\mathcal{G}}.$$

Labelled Subgraph Isomorphism

Given two labeled graphs $\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}}, l_{\mathcal{G}})$ and $\mathcal{S} = (V_{\mathcal{S}}, E_{\mathcal{S}}, l_{\mathcal{S}})$, \mathcal{S} is subgraph isomorphic to \mathcal{G} (denoted as $\mathcal{S} \subseteq \mathcal{G}$) if there exists a function $f : V_{\mathcal{S}} \to V_{\mathcal{G}}$ such that:

$$\forall u, v \in V_{\mathcal{S}}, (u, v) \in E_{\mathcal{S}} \implies (f(u), f(v)) \in E_{\mathcal{G}}.$$

Induced Labelled Subgraph Isomorphism

Given two labeled graphs $\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}}, l_{\mathcal{G}})$ and $\mathcal{S} = (V_{\mathcal{S}}, E_{\mathcal{S}}, l_{\mathcal{S}})$, \mathcal{S} is induced subgraph isomorphic to \mathcal{G} (denoted as $\mathcal{S} \subseteq_{id} \mathcal{G}$) if and only if:

$$\textcircled{0} \ \mathcal{S} \subseteq \mathcal{G} \text{ and }$$

$$\exists \forall u, v \in V_{\mathcal{S}}, (u, v) \notin E_{\mathcal{S}} \implies (f(u), f(v)) \notin E_{\mathcal{G}}.$$

13 / 81

4 **A N N A A A A**

In this thesis, we intend to solve two problems that are derived from the problem of induced subgraph isomorphism.

Problem 1: Subgraph matching

Given a target graph $\mathcal{T} = (V_{\mathcal{T}}, E_{\mathcal{T}}, l_{\mathcal{T}})$ and a pattern $\mathcal{P} = (V_{\mathcal{P}}, E_{\mathcal{P}}, l_{\mathcal{P}})$, both are labeled connected graphs, the subgraph matching problem aims to determine whether \mathcal{P} is induced subgraph isomorphic to \mathcal{T} or not.

In this thesis, we intend to solve two problems that are derived from the problem of induced subgraph isomorphism.

Problem 1: Subgraph matching

Given a target graph $\mathcal{T} = (V_{\mathcal{T}}, E_{\mathcal{T}}, l_{\mathcal{T}})$ and a pattern $\mathcal{P} = (V_{\mathcal{P}}, E_{\mathcal{P}}, l_{\mathcal{P}})$, both are labeled connected graphs, the subgraph matching problem aims to determine whether \mathcal{P} is induced subgraph isomorphic to \mathcal{T} or not.

Problem 2: Matching explanation

Let $\mathcal{P} = (V_{\mathcal{P}}, E_{\mathcal{P}}, l_{\mathcal{P}})$ and $\mathcal{T} = (V_{\mathcal{T}}, E_{\mathcal{T}}, l_{\mathcal{T}})$ represent two graphs, where \mathcal{P} is a known induced subgraph of \mathcal{T} . The matching explanation problem seeks to determine a bijective mapping $\phi : V_{\mathcal{P}} \to V_{\mathcal{T}}$ that accurately identifies the correspondence between the nodes of \mathcal{P} and their counterparts in \mathcal{T} .

Nguyen Quang Duc (HCMUT)

• Non-induced settings: This setting holds significant utility in various aspects of data management, including tasks like graph indexing, graph similarity search, and graph retrieval¹.

¹Roy et al., "Interpretable Neural Subgraph Matching for Graph Retrieval".

²Garey and Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness.

³Shang et al., "Taming verification hardness: an efficient algorithm for testing subgraph isomorphism".

⁴He and Singh, "Graphs-at-a-time: query language and access methods for graph databases".

⁵W.-S./Han, J. Lee, and J.-H. Lee, "TurbolSO: Towards ultrafast and robust subgraph isomorphism search in large graph databases".

⁶Bi et al., "Efficient Subgraph Matching by Postponing Cartesian Products".

⁷Bhattarai, H./Liu, and Huang, "CECI: Compact Embedding Cluster Index for Scalable Subgraph Matching".

⁸M. Han et al., "Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together".

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

- Non-induced settings: This setting holds significant utility in various aspects of data management, including tasks like graph indexing, graph similarity search, and graph retrieval¹.
- Induced settings: This setting has been proven to be NP-complete². Various algorithms³⁴⁵⁶⁷⁸ have been proposed focusing on generating effective matching orders and designing robust filtering strategies to reduce the number of candidates in the data graph.

¹Roy et al., "Interpretable Neural Subgraph Matching for Graph Retrieval".

²Garey and Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness.

³Shang et al., "Taming verification hardness: an efficient algorithm for testing subgraph isomorphism".

⁴He and Singh, "Graphs-at-a-time: query language and access methods for graph databases".

^bW.-S. Han, J. Lee, and J.-H. Lee, "TurboISO: Towards ultrafast and robust subgraph isomorphism search in large graph databases".

⁶Bi et al., "Efficient Subgraph Matching by Postponing Cartesian Products".

⁷Bhattarai, H.,Liu, and Huang, "CECI: Compact Embedding Cluster Index for Scalable Subgraph Matching".

⁸M. Han et al., "Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together".

Neural subgraph isomorphism and explanation

Modern approaches for subgraph isomorphism and explanation utilize Graph Neural Networks:

- The initial work⁹ attempted to assess the feasibility of Graph Neural Networks in small subgraph matching.
- With recent advancements in GNNs¹⁰¹¹¹², contemporary subgraph matching techniques¹³¹⁴¹⁵ have achieved state-of-the-art results in terms of efficiency.
- Recent studies have utilized the interpretability of GNNs¹⁶¹⁷¹⁸ through a model-intrinsic perspective.

⁹Scarselli et al., "The Graph Neural Network Model".

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

¹⁰Kipf and Welling, "Semi-Supervised Classification with Graph Convolutional Networks".

¹¹Hamilton, Ying, and Leskovec, "Inductive representation learning on large graphs".

¹²K. Xu et al,, "How Powerful are Graph Neural Networks?"

¹³Bai et al., "Convolutional set matching for graph similarity".

⁴⁴Zhang and W. S. Lee, "Deep Graphical Feature Learning for the Feature Matching Problem".

¹⁵Ying et al., "Neural Subgraph Matching".

¹⁶Yuan et al., "XGNN: Towards Model-Level Explanations of Graph Neural Networks".

¹⁷Vy and Thai,,"PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks".

¹⁸ Wu et al., "Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph Matching". 🛶 🗆 🐖 🗇

Neural subgraph isomorphism and explanation

NeuralMatch¹⁹, a cutting-edge subgraph matching algorithm employing a specialized graph neural network architecture.

Neural subgraph isomorphism and explanation

DualMP²⁰, one of state-of-the-art approaches for performing subgraph counting and matching. This method leverages Dual Message Passing Neural Networks (DMPNNs) to learn both node and edge representations simultaneously in an aligned space through an efficient asynchronous update mechanism.

²⁰X. Liu and Song, "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching".

Conventional Graph Neural Networks

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

January 2025

1 Introduction

Preliminaries and Problem Statement

3 Related Works

Proposed Method

5 Experiments and Results

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

Approach Overview

²¹Lim et al., "Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation"

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

Input Representation

Suppose that $\mathcal{P} = \{V_{\mathcal{P}}, E_{\mathcal{P}}, l_{\mathcal{P}}\}$ and the target as $\mathcal{T} = \{V_{\mathcal{T}}, E_{\mathcal{T}}, l_{\mathcal{T}}\}$ where V, E are the sets of nodes and edges respectively; $l: V \to T_V$ is the labelling function.

Input Representation

Suppose that $\mathcal{P} = \{V_{\mathcal{P}}, E_{\mathcal{P}}, l_{\mathcal{P}}\}$ and the target as $\mathcal{T} = \{V_{\mathcal{T}}, E_{\mathcal{T}}, l_{\mathcal{T}}\}$ where V, E are the sets of nodes and edges respectively; $l: V \to T_V$ is the labelling function.

$$\begin{split} \boldsymbol{X} &= \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{|V_{\mathcal{P}}|}, \vec{x}_{|V_{\mathcal{P}}|+1}, \dots, \vec{x}_{|V_{\mathcal{P}}|+|V_{\mathcal{T}}|}\} \text{ with } \vec{x}_i \in \mathbb{R}^{2|T_V|} \\ \boldsymbol{A}_{ij}^{in} &= \begin{cases} 1 & \text{if there is an undirected edge or} \\ & \text{a directed edge that connects } j \text{ to } i \\ 0 & \text{otherwise} \end{cases} \\ \boldsymbol{A}_{ij}^{cr} &= \begin{cases} \boldsymbol{A}_{ij}^{in} & \text{if } i, j \in \mathcal{P} \text{ or } i, j \in \mathcal{T} \\ 1 & \text{if } l(i) = l(j) \text{ and } i \in \mathcal{P} \text{ and } j \in \mathcal{T}, \\ & \text{or if } l(i) = l(j) \text{ and } i \in \mathcal{T} \text{ and } j \in \mathcal{P} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

(1)

(2)

(3)

Graph Multi-hop Attention layer

Assuming that we are applying this layer on an abstract graph $\mathcal{G} = \{V, E, l\}$, we present this graph with (\mathbf{X}, \mathbf{A}) where $\mathbf{X} \in \mathbb{R}^{|V| \times F}$ is the set of node features and E is the set of edges.

$$\begin{split} \boldsymbol{X}_h &= \{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_{|V|} \}, \ \vec{x_i} \in \mathbb{R}^F \\ \boldsymbol{A}_{ij} &= \begin{cases} 1 & \text{if there is an edge that connects } j \text{ to } i \\ 0 & \text{otherwise} \end{cases} \end{split}$$

(4)

(5)

Graph Multi-hop Attention layer

Assuming that we are applying this layer on an abstract graph $\mathcal{G} = \{V, E, l\}$, we present this graph with (\mathbf{X}, \mathbf{A}) where $\mathbf{X} \in \mathbb{R}^{|V| \times F}$ is the set of node features and E is the set of edges.

$$\begin{split} \boldsymbol{X}_h &= \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{|V|}\}, \ \vec{x_i} \in \mathbb{R}^F \\ \boldsymbol{A}_{ij} &= \begin{cases} 1 & \text{if there is an edge that connects } j \text{ to } i \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Then, we project the input features into embedding space and calculate 1-hop attention among all nodes using Luong's Attention.

$$\begin{split} \boldsymbol{X'} &= \{ \vec{x'}_i = \boldsymbol{W}_h \vec{x}_i \}_{i=1}^{|V|}, \vec{x'}_i \in \mathbb{R}^{F'} \\ e_{ij} &= \begin{cases} \delta(\vec{x'}_i^T \boldsymbol{W}_e \vec{x'}_j) & \text{a directed edge } j \text{ to } i, \\ \delta(\vec{x'}_i^T \boldsymbol{W}_e \vec{x'}_j + \vec{x'}_j^T \boldsymbol{W}_e \vec{x'}_i) & \text{an undirected edge } j \text{ to } i, \end{cases} \\ \mathcal{A}^{(1)} &= \{ a_{ij}^{(1)} = \frac{\exp(e_{ij})}{\sum_{n \in \mathcal{N}} \exp(e_{in})} \boldsymbol{A}_{ij} | i, j = \overline{1, |V|} \} \end{split}$$

Nguyen Quang Duc (HCMUT)

(4)

(5)

(6)

(7)

(8)

The attention diffusion matrix can be calculated by the weighted sum of all k-hop attention matrix with attention decay factors θ_k .

$$\begin{cases} (\mathcal{A}^{(1)})^0 &= \mathbf{I} \\ \mathcal{A} &= \sum_{k=0}^{\infty} \theta_k (\mathcal{A}^{(1)})^k \text{ where } \sum_{k=0}^{\infty} \theta_k = 1 \text{ and } \theta_k > 0 \end{cases}$$

(9)

The attention diffusion matrix can be calculated by the weighted sum of all k-hop attention matrix with attention decay factors θ_k .

$$\begin{cases} (\mathcal{A}^{(1)})^0 &= \mathbf{I} \\ \mathcal{A} &= \sum_{k=0}^{\infty} \theta_k (\mathcal{A}^{(1)})^k \text{ where } \sum_{k=0}^{\infty} \theta_k = 1 \text{ and } \theta_k > 0 \end{cases}$$

The output of GMA layer is a projection of the combination *H*-head attention node features.

$$\widehat{oldsymbol{X}} = \left(igcap_{h=1}^{H} \delta \left(\mathcal{A}_h oldsymbol{X'}_h
ight)
ight) oldsymbol{W}_o ext{ with } oldsymbol{W}_o \in \mathbb{R}^{HF' imes F'}.$$

Nguyen Quang Duc (HCMUT)

(9)

(10)

There are two main problems²² associated with computing exact attention diffusion matrix A:
 The elevated computational intricacies involved in computing A due to matrix multiplication.
 The judicious selection of the suitable values for θ_k, which significantly influences the augmentation or attenuation of the model performance.

22 Gasteiger, Bojchevski, and Günnemann, "Predict then Propagate: Graph Neural Networks meet Personalized PageRank'a 🛌

There are two main problems²² associated with computing exact attention diffusion matrix A:
The elevated computational intricacies involved in computing A due to matrix multiplication.
The judicious selection of the suitable values for θ_k, which significantly influences the augmentation or attenuation of the model performance.

Approximate, learnable multi-hop attention mechanism

22 Gasteiger, Bojchevski, and Günnemann, "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" 🕨

Learnable Multi-hop Attention Mechanism

Reducing multi-hop attention matrix computation complexity Following the methodology outlined in the previous work²³, we adopt the geometric distribution to determine θ_k , wherein $\theta_k = \alpha(1-\alpha)^k, \alpha \in (0,1)$ represents the teleport probability. The approximation for $\mathcal{AX'}$ is achieved as follows.

$$\begin{cases} \boldsymbol{Z}^{(0)} &= \boldsymbol{X'} \\ \boldsymbol{Z}^{(k)} &= (1-\alpha)\mathcal{A}^{(1)}\boldsymbol{Z}^{(k-1)} + \alpha \boldsymbol{Z}^{(0)}, \ k = \overline{1, K} \end{cases}$$

²³Wang et al,, "Multi-hop Attention Graph Neural Networks".

Learnable Multi-hop Attention Mechanism

Reducing multi-hop attention matrix computation complexity Following the methodology outlined in the previous work²³, we adopt the geometric distribution to determine θ_k , wherein $\theta_k = \alpha(1-\alpha)^k, \alpha \in (0,1)$ represents the teleport probability. The approximation for $\mathcal{AX'}$ is achieved as follows.

$$\begin{cases} \boldsymbol{Z}^{(0)} &= \boldsymbol{X'} \\ \boldsymbol{Z}^{(k)} &= (1-\alpha)\mathcal{A}^{(1)}\boldsymbol{Z}^{(k-1)} + \alpha \boldsymbol{Z}^{(0)}, \ k = \overline{1, K} \end{cases}$$

Proposition 1

 $lim_{K \to \infty} \mathbf{Z}^{(K)} = \mathcal{A} \mathbf{X'}$

This proposition was proven in (Wang et al., 2020).

²³Wang et al., "Multi-hop Attention Graph Neural Networks".

Nguyen Quang Duc (HCMUT)

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

January 2025
Learnable Multi-hop Attention Mechanism

Reducing multi-hop attention matrix computation complexity

Proposition (Proposition 1)

 $lim_{K\to\infty} \mathbf{Z}^{(K)} = \mathcal{A}\mathbf{X'}$

However, there is a tradeoff between the approximation error and computing resource.

- Question: How much large is K?
- Question: How much is the approximate error of $oldsymbol{Z}^{(K)}$?

Learnable Multi-hop Attention Mechanism

Reducing multi-hop attention matrix computation complexity

Proposition (Proposition 1)

 $lim_{K\to\infty} \boldsymbol{Z}^{(K)} = \mathcal{A} \boldsymbol{X'}$

However, there is a tradeoff between the approximation error and computing resource.

- Question: How much large is K?
- Question: How much is the approximate error of $oldsymbol{Z}^{(K)}$?

In this thesis, we propose the theoretical evidence for ${\cal A}$ approximation error.

Proposition 2

The average approximate error of each element in $\mathcal{A}^{(K)} = \mathbf{Z}^{(K)} \mathbf{X'}^{-1}$ is bound by $(1 - \alpha)^{K+1}$

Learning distinct teleport probabilities for nodes

- Personalized PageRank (PPR)²⁴ which reveals the importance of each node
- The original work of GAT has proved that the attention matrix in GAT can be viewed as the transition matrix in PPR²⁵ but it used the same teleport probability for all nodes, which limits the power of PPR theoretically.

²⁴Lofgren, "Efficient Algorithms for Personalized PageRank".

²⁵Wang et al., "Multi-hop Attention Graph Neural Networks".

Learning distinct teleport probabilities for nodes

- Personalized PageRank (PPR)²⁴ which reveals the importance of each node
- The original work of GAT has proved that the attention matrix in GAT can be viewed as the transition matrix in PPR²⁵ but it used the same teleport probability for all nodes, which limits the power of PPR theoretically.
- Leveraging the capabilities of PPR, we propose a novel approach that involves the customization of teleport probabilities for individual nodes, denoted as $\beta = \{\beta_v\}_{v=1}^{|V|}$.

²⁴Lofgren, "Efficient Algorithms for Personalized PageRank".

²⁵Wang et al., "Multi-hop Attention Graph Neural Networks".

Learning distinct teleport probabilities for nodes Inspired by Gated Recurrent Units²⁶, we devise a method wherein the network autonomously learns the teleport probabilities via a straightforward linear transformation.

 $\beta = \sigma((\boldsymbol{X'}||\boldsymbol{\mathcal{A}}^{(1)}\boldsymbol{X'})\boldsymbol{W}_{\beta} + b),$

26 Cho et al., "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation" 🗇 🦻

Learning distinct teleport probabilities for nodes Inspired by Gated Recurrent Units²⁶, we devise a method wherein the network autonomously learns the teleport probabilities via a straightforward linear transformation.

$$\beta = \sigma((\boldsymbol{X'}||\boldsymbol{\mathcal{A}}^{(1)}\boldsymbol{X'})\boldsymbol{W}_{\beta} + b),$$

Employing distinct teleport probabilities for each node results in modifications to Equation 9. These alterations encompass $\theta_{kj} = \beta_j (1 - \beta_j)^k$, $\sum_{k=0}^{\infty} \theta_{kj} = 1$ for $j \in \overline{1, N}$, and $\theta_{kj} > 0$.

² 🖉 cho et al., "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation" 🗇 🛌

Learning distinct teleport probabilities for nodes Inspired by Gated Recurrent Units²⁶, we devise a method wherein the network autonomously learns the teleport probabilities via a straightforward linear transformation.

$$\beta = \sigma((\boldsymbol{X'}||\boldsymbol{\mathcal{A}}^{(1)}\boldsymbol{X'})\boldsymbol{W}_{\beta} + b),$$

Employing distinct teleport probabilities for each node results in modifications to Equation 9. These alterations encompass $\theta_{kj} = \beta_j (1 - \beta_j)^k$, $\sum_{k=0}^{\infty} \theta_{kj} = 1$ for $j \in \overline{1, N}$, and $\theta_{kj} > 0$.

Proposition 3

$$lim_{K \to \infty} \boldsymbol{Z}_{\beta}^{(K)} = \mathcal{A}_{\eta} \boldsymbol{X'}$$

² 🖉 cho et al., "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation" 🗇 🛌

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

Learnable multi-hop attention mechanism

Learning distinct teleport probabilities for nodes

Algorithm 1: Learnable Multi-hop Attention

31 / 81

Graph Learnable Multi-hop Attention Networks

With the GLeMA layer, using the input of triple (X, A^{in}, A^{cr}) , we can compute higher representation for the query and target graphs as follows.

$$\begin{cases} \boldsymbol{X}^{0} = \boldsymbol{X} \\ \widehat{\boldsymbol{X}}_{in}^{l} = \mathsf{GLeMA}_{l}(\boldsymbol{X}^{l-1}, \boldsymbol{A}^{in}), l = \overline{1, L_{G}} \\ \widehat{\boldsymbol{X}}_{cr}^{l} = \mathsf{GLeMA}_{l}(\boldsymbol{X}^{l-1}, \boldsymbol{A}^{cr}), l = \overline{1, L_{G}} \\ \boldsymbol{X}^{l} = \widehat{\boldsymbol{X}}_{cr}^{l} - \widehat{\boldsymbol{X}}_{in}^{l}, l = \overline{1, L_{G}} \end{cases}$$

(13)

Graph Learnable Multi-hop Attention Networks

With the GLeMA layer, using the input of triple (X, A^{in}, A^{cr}) , we can compute higher representation for the query and target graphs as follows.

$$\begin{cases} \boldsymbol{X}^{0} = \boldsymbol{X} \\ \widehat{\boldsymbol{X}}_{in}^{l} = \mathsf{GLeMA}_{l}(\boldsymbol{X}^{l-1}, \boldsymbol{A}^{in}), l = \overline{1, L_{G}} \\ \widehat{\boldsymbol{X}}_{cr}^{l} = \mathsf{GLeMA}_{l}(\boldsymbol{X}^{l-1}, \boldsymbol{A}^{cr}), l = \overline{1, L_{G}} \\ \boldsymbol{X}^{l} = \widehat{\boldsymbol{X}}_{cr}^{l} - \widehat{\boldsymbol{X}}_{in}^{l}, l = \overline{1, L_{G}} \end{cases}$$

The node features at the l^{th} layer are computed by taking the difference between the inter-graph features and the intra-graph features from the previous $(l-1)^{th}$ layer. This learning of disparities between inter-graph and intra-graph features enhances the signal for verifying subgraph isomorphism.

(13)

The methodology for computing the representation vector is elucidated in Equation 14. In this equation, all pattern node feature vectors are aggregated to form the representation for our input.

$$x_{repr}^0 = \frac{1}{|V_{\mathcal{P}}|} \sum_{i \in V_{\mathcal{P}}} x_i^{L_G}$$

(14)

The methodology for computing the representation vector is elucidated in Equation 14. In this equation, all pattern node feature vectors are aggregated to form the representation for our input.

$$x_{repr}^0 = \frac{1}{|V_{\mathcal{P}}|} \sum_{i \in V_{\mathcal{P}}} x_i^{L_G}$$

Equation 15 provides the mathematical formulations underpinning the classifier of subgraph matching.

$$\begin{cases} x_{repr}^i &= \delta(\boldsymbol{W}_i x_{repr}^{i-1} + b_i), i = \overline{1, L_{FC} - 1} \\ \widehat{y} &= \sigma(\boldsymbol{W}_y x_{repr}^{L_{FC} - 1} + b_y) \end{cases}$$

Nguyen Quang Duc (HCMUT)

(14)

The mapping of nodes between the query and target graph is established if the mapping probability is larger than a predefined threshold ϵ .

$$\mathcal{M} = \{(i, j, p_{ij}) | p_{ij} \ge \epsilon\},$$
where $i \in V_{\mathcal{P}}, j \in V_{\mathcal{T}}$ and
 $p_{ij} = \frac{1}{2} \left((a_{ij}^{(1)})^{L_G} + (a_{ji}^{(1)})^{L_G} \right).$

In (16), \mathcal{M} is the set of mapping nodes between the pattern and target graph; p_{ij} which is computed by average of 1-hop attention coefficients $((a_{ij}^{(1)})^{L_G}, (a_{ji}^{(1)})^{L_G})$ is the mapping probability between pattern i^{th} node and target j^{th} node.

(16)

Optimization Objective

- \mathcal{L}_{sm} is a binary cross-entropy loss designed to assess the model capacity to predict subgraph isomorphism accurately.
- \mathcal{L}_{me} is an attention-based loss, aimed at reinforcing the attention coefficients between nodes i and j ($i \in V_{\mathcal{P}}, j \in V_{\mathcal{T}}$) that correspond to actual mappings, while simultaneously diminishing the coefficients for node pairs sharing the same label (represented as $m \in V_{\mathcal{P}}, n \in V_{\mathcal{T}}, l(m) = l(n)$) but lacking a mapping relationship.
- \mathcal{L} is the final objective function where λ is an hyperparameter.

Optimization Objective

- *L*_{sm} is a binary cross-entropy loss designed to assess the model capacity to predict subgraph isomorphism accurately.
- \mathcal{L}_{me} is an attention-based loss, aimed at reinforcing the attention coefficients between nodes i and j ($i \in V_{\mathcal{P}}, j \in V_{\mathcal{T}}$) that correspond to actual mappings, while simultaneously diminishing the coefficients for node pairs sharing the same label (represented as $m \in V_{\mathcal{P}}, n \in V_{\mathcal{T}}, l(m) = l(n)$) but lacking a mapping relationship.

• \mathcal{L} is the final objective function where λ is an hyperparameter.

$$\begin{cases} \mathcal{L}_{sm} &= -\frac{1}{|\mathcal{D}|} \sum_{k=1}^{|\mathcal{D}|} y_k \cdot \log(\widehat{y}_k) + (1 - y_k) \cdot \log(1 - \widehat{y}_k) \\ \mathcal{L}_{me} &= \frac{1}{|\mathcal{D}|} \sum_{k=1}^{|\mathcal{D}|} \frac{\sum \exp\left(-\left(a_{ij}^{(1)(L_G)}\right)_k\right)}{\sum \exp\left(-\left(a_{mn}^{(1)(L_G)}\right)_k\right) - \sum \exp\left(-\left(a_{ij}^{(1)(L_G)}\right)_k\right) + 1} \\ \mathcal{L} &= \mathcal{L}_{sm} + \lambda \mathcal{L}_{me} \end{cases}$$

Nguyen Quang Duc (HCMUT)

B Related Works Experiments and Results 5

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

We assess the performance of our framework across a diverse range of real datasets encompassing various domains, including bioinformatics, chemistry, computer vision, and social networks.

Domain	${\cal D}$	$\overline{ V_{\mathcal{T}} }$	$\overline{ E_{\mathcal{T}} }$	\overline{deg}	$ \mathcal{D} $	$ \Sigma $
Bioinformatics	KKI	26.96	48.42	3.19	83	190
Chemistry	COX2	41.22	43.45	2.10	467	8
Chemistry	COX2_MD	26.28	335.12	25.27	303	7
Chemistry	DHFR	42.43	44.54	2.10	756	9
Social networks	DBLP-v1	10.48	19.65	3.43	19456	39
Computer vision	MSRC-21	77.52	198.32	5.10	563	22

Table 1: Statistics of real datasets

Exact approach We utilize seven distinct approaches to compare with xNeuSM, including: VF3²⁷, TurbolSO²⁸, CFL²⁹, CECl³⁰, QuickSl³¹, DAF³², GraphQL³³. **Approximate approach** We compare our approach with NeuralMatch³⁴ and DualMP³⁵.

²⁷Carletti et al., "Introducing VF3: A New Algorithm for Subgraph Isomorphism".

³³He and Singh, "Graphs-at-a-time: query language and access methods for graph databases".

³⁴Ying et al., "Neural Subgraph Matching".

35 X. Liu and Song, "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

 ²⁸W-S. Han, J Lee, and J.-H. Lee, "TurbolSO: Towards ultrafast and robust subgraph isomorphism search in large graph databases".
 ²⁹Bi et al., "Efficient Subgraph Matching by Postponing Cartesian Products".

³⁰Bhattarai, H. Liu, and Huang, "CECI: Compact Embedding Cluster Index for Scalable Subgraph Matching".

^{*1}Shang et al., "Taming verification hardness: an efficient algorithm for testing subgraph isomorphism".

³²M. Han et al., "Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set Together".

Metrics

Subgraph matching task

- Execution time
- Accuracy, ROC AUC, PR AUC, F1 score

4.5

Metrics

Subgraph matching task

- Execution time
- Accuracy, ROC AUC, PR AUC, F1 score

Matching explanation task

• Average Top-K Accuracy

$$TopK = \frac{1}{|\mathcal{D}_{test}|} \sum_{(\mathcal{T}, \mathcal{P}) \in \mathcal{D}_{test}} \left(\frac{1}{|V_{\mathcal{P}}|} \sum_{i \in V_{\mathcal{P}}} Acc_i^K \right)$$

Mean Reciprocal Rank

$$MRR = \frac{1}{|\mathcal{D}_{test}|} \sum_{(\mathcal{T}, \mathcal{P}) \in \mathcal{D}_{test}} \left(\frac{1}{|V_{\mathcal{P}}|} \sum_{i \in V_{\mathcal{P}}} \frac{1}{rank_i} \right)$$

End2end subgraph isomorphism - Runtime

End2end subgraph isomorphism - Accuracy

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

January 2025

Confidence assessment

By elevating the output probability threshold for the subgraph matching task, we demonstrate that our model maintains high performance levels.

Figure 10: Relation between confidence threshold and model performance

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

We evaluated the performance of all techniques using the above datasets with different levels of graph density, ranging from sparse to dense graphs.

Vary D(P): We divided queries into two subsets based on their average degree. The first subset, labeled "dense", included queries with a degree of three or higher. The second subset, labeled "sparse", encompassed queries with a degree less than 3.

• Vary $|V_{\mathcal{P}}|$: We partitioned the query set into four groups based on query size thresholds: $|V_{\mathcal{P}}| \leq 20, \ 20 < |V_{\mathcal{P}}| \leq 40, \ 40 < |V_{\mathcal{P}}| \leq 60, \ \text{and} \ 60 < |V_{\mathcal{P}}|.$

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

January 2025

Quantitative analysis: It is important to note that this task is exclusively applicable to known isomorphism pairs of (pattern, target). Non-isomorphic cases were deliberately excluded from our testing, as they may not be representative of real-world use cases.

Dataset	Top-1 \uparrow	Тор-5↑	Top-10 ↑	MRR↑
KKI	0.9978	0.9999	0.9999	0.9987
COX2	0.2513	0.6259	0.8395	0.4273
COX2_MD	0.9481	0.9828	0.9881	0.9630
DHFR	0.9999	0.9999	0.9999	0.9999
DBLP-v1	0.9994	0.9999	0.9999	0.9996
MSRC-21	0.9994	0.9999	0.9999	0.9999

Table 2: Performance of in subgraph aligning task

Matching explanation

Qualitative analysis

(a) Subgraph isomorphism case. From left to right: The target graph and the isomorphic pattern graph

(b) Subgraph non-isomorphism case. From left to right: The target graph and the non-isomorphic pattern graph

Figure 16: Examples of isomorphism and non-isomorphism cases resulted from our model in the KKI dataset

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

< □ ▷ < ⊡ ▷ < ⊡ ▷ < ⊡ ▷ < ∃</p>
January 2025

Ablation study

- Model Architecture:
 - cross-only: This configuration exclusively employs interconnections between the graph and subgraph.
 - intra-only: This configuration solely relies on intra-connections within the graph and subgraph.
 - both: This configuration combines both intra- and inter-connections of the graph and subgraph.

Multi-hop Mechanism:

- 1-hop: Here, we replace the GLeMA layer with a standard 1-hop GAT layer.
- increasing-hop: This configuration employs the GLeMA with a continuously increasing number of hops in the deeper layers $(K^{(L_G)} = L_G)$.
- interleaved-hop: This configuration uses the GLeMA with an interleaving-increasing number of hops. In this study, we use $K^{(L_G)} = 2L_G 1$.
- Attention head: We modify the base xNeuSM with 2 and 4 attention heads. These settings are used to understand the relationship between increasing model complexity (by increasing attention heads) and model performance.

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

Model	Time↓	ROC ↑	PR↑	F1 ↑	Acc ↑	MRR
Cross-only 1-hop	0.56	0.979	0.959	0.979	0.979	0.999
Cross-only increasing-hop	0.60	0.977	0.956	0.977	0.977	0.996
Cross-only interleaved-hop	0.42	0.978	0.958	0.978	0.978	0.997
Intra-only 1-hop	0.49	0.611	0.578	0.485	0.612	_
Intra-only increasing-hop	0.40	0.628	0.593	0.515	0.628	_
Intra-only interleaved-hop	0.42	0.669	0.626	0.602	0.670	_
Both 1-hop	0.62	0.968	0.939	0.968	0.968	0.999
Both increasing-hop	0.70	0.980	0.963	0.980	0.980	0.999
Both interleaved-hop	0.51	0.979	0.964	0.980	0.979	0.998
With 2 attention heads	0.86	0.956	0.935	0.954	0.957	0.998
With 4 attention heads	1.19	0.938	0.923	0.936	0.937	0.999

Table 3: Impact of xNeuSM components on KKI

Nguyen Quang Duc (HCMUT)

-

Model	Time↓	ROC ↑	PR↑	F1 ↑	Acc ↑	MRR
Cross-only 1-hop	0.12	0.967	0.946	0.968	0.967	0.306
Cross-only increasing-hop	0.12	0.962	0.931	0.964	0.962	0.191
Cross-only interleaved-hop	0.11	0.974	0.953	0.974	0.974	0.203
Intra-only 1-hop	0.11	0.472	0.498	0.007	0.472	_
Intra-only increasing-hop	0.11	0.457	0.499	0.003	0.458	_
Intra-only interleaved-hop	0.12	0.491	0.495	0.180	0.491	_
Both 1-hop	0.12	0.962	0.950	0.961	0.962	0.177
Both increasing-hop	0.39	0.972	0.961	0.972	0.972	0.298
Both interleaved-hop	0.38	0.983	0.974	0.984	0.983	0.427
With 2 attention heads	0.49	0.954	0.925	0.955	0.954	0.298
With 4 attention heads	0.63	0.907	0.892	0.900	0.907	0.215

Table 4: Impact of xNeuSM components on COX2

Nguyen Quang Duc (HCMUT)

-

Model	Time↓	ROC ↑	PR↑	F1 ↑	Acc ↑	MRR
Cross-only 1-hop	0.07	0.996	0.995	0.996	0.996	0.996
Cross-only increasing-hop	0.09	0.980	0.964	0.981	0.980	0.983
Cross-only interleaved-hop	0.08	0.980	0.963	0.981	0.980	0.985
Intra-only 1-hop	0.09	0.640	0.598	0.579	0.640	_
Intra-only increasing-hop	0.13	0.643	0.593	0.634	0.643	_
Intra-only interleaved-hop	0.09	0.618	0.576	0.573	0.618	_
Both 1-hop	0.09	0.996	0.992	0.996	0.996	0.995
Both increasing-hop	0.10	0.918	0.910	0.912	0.918	0.989
Both interleaved-hop	0.13	0.996	0.995	0.997	0.996	0.999
With 2 attention heads	0.17	0.976	0.964	0.975	0.976	0.999
With 4 attention heads	0.28	0.986	0.984	0.985	0.986	0.999

Table 5: Impact of xNeuSM components on DBLP-v1

Generalization

We additionally conduct experiments to demonstrate the generalization capabilities of xNeuSM in out-of-distribution settings. In these settings, we utilize the model trained on one dataset to test on the others, with the same datasets as in the previous experiments.

Generalization

We additionally conduct experiments to demonstrate the generalization capabilities of xNeuSM in out-of-distribution settings. In these settings, we utilize the model trained on one dataset to test on the others, with the same datasets as in the previous experiments.

 Table 6: ROC AUC of out-distribution settings. For each dataset, the model trained on a different dataset that achieved the highest ROC AUC is in [*italic*].

Test	KKI	COX2				MSPC 21
Train				DHEK	DDLE-A1	WSRC-21
ккі	0.979	0.634	0.499	0.970	0.923	0.928
COX2	0.500	0.983	0.500	0.500	0.501	0.500
COX2_MD	0.534	0.412	0.986	0.499	0.565	0.497
DHFR	0.547	0.797	0.499	0.998	0.758	0.668
DBLP-v1	0.502	0.883	0.491	0.689	0.996	0.505
MSRC-21	<u>0.863</u>	0.539	0.604	0.961	0.712	0.997

55 / 81

Observations:

- A model trained on a dataset with a large $|\Sigma|$ exhibits generalization to datasets with smaller $|\Sigma|$ (trained on KKI and tested on DHFR, DBLP-v1, MSRC-21).
- A model trained on a dataset with a lower incidence of duplicated node graphs exhibits poor generalization to datasets characterized by a higher frequency of duplicated node graphs (no model trained on other datasets well generalizes to COX2, COX2_MD).
- Furthermore, a model trained on dense graphs can generalize to datasets with sparser graphs (trained on MSRC-21 and tested on DHFR, DBLP-v1).

Directed subgraph matching

We conducted an assessment of our proposed methodology using directed graphs. We effectuated the transformation of all edges within these datasets into directed edges, wherein we designated the tail node as the one with a smaller label and the head node as the one with a larger label.

Directed subgraph matching

We conducted an assessment of our proposed methodology using directed graphs. We effectuated the transformation of all edges within these datasets into directed edges, wherein we designated the tail node as the one with a smaller label and the head node as the one with a larger label.

Table 7: Performance of xNeuSM directed subgraph matching and matching explanation

Dataset	ROC ↑	PR↑	F1 ↑	Acc ↑	Top-1 \uparrow	Top-2 ↑	Top-10 ↑	MRR ↑
KKI	0.975	0.953	0.975	0.975	0.996	0.999	0.999	0.998
COX2	0.947	0.908	0.949	0.947	0.103	0.396	0.640	0.261
COX2_MD	0.989	0.979	0.989	0.989	0.999	0.999	0.999	0.999
DHFR	0.969	0.944	0.970	0.969	0.999	0.999	0.999	0.999
DBLP-v1	0.960	0.940	0.960	0.960	0.745	0.996	0.999	0.866
MSRC-21	0.988	0.977	0.988	0.988	0.999	0.999	0.999	0.999

57 / 81

58 / 81

Summary

- This thesis proposes a framework called xNeuSM for explainable neural subgraph matching using novel Graph Learnable Multi-hop Attention Networks.
- xNeuSM represents the structural attributes of graphs as adjacency matrices to explicitly capture cross-graph features between the query and target graphs.
- The learnable muti-hop attention mechanism is introduced to solve limitations of previous/ multi-hop attention one and its effectiveness of theoretically verified.
- The framework optimizes subgraph search measures through end-to-end neural networks while concurrently learning node alignments akin to classical combinatorial methods.
- Empirically, xNeuSM has the fastest execution time over baseline techniques, with comparable accuracy and explicit explainability.
- Published two papers including one at IJCNN 2023 conference(B-ranked)³⁶ and IEEE Access (Q1 journal)³⁷.

³⁶T T. Nguyen et al., "10X Faster Subgraph Matching: Dual Matching Networks with Interleaved Diffusion Attention".
³⁷D. Q. Nguyen et al., "Explainable Neural Subgraph Matching With Learnable Multi-Hop Attention".

Nguyen Quang Duc (HCMUT)

Subgraph Isomorphism Prediction

xNeuSM can be adapted for many other problems:

- Inexact subgraph matching, partial subgraph matching, geometric subgraph isomorphism, etc.
- Predicting molecule function, finding patterns in molecules, and other applications in the drug discovery process
- About the model: incorporating edge labels, utilizing more robust GNN modules, etc.
 - Develop an efficient node-matching strategy for cases with a high number of similar nodes.

- THE END -

Thank you for your attention

Acknowledgements

We acknowledge Vingroup Innovation Foundation for supporting Master, PhD Scholarship, under code VINIF.2022.ThS.023.

Contact nqduc@hcmut.edu.vn

Labelled Directed Connected Graph

A labeled directed connected graph is a graph represented with a 3-tuple $\mathcal{G}=(V,E,l)$ where

(□) (□) (□) (□) (□)

- \bigcirc V is a set of nodes,
- $\label{eq:eq:expansion} {\it 2} \ E \subseteq [V]^2 \ \text{is a set of edges} \ (u,v) \text{, where} \ u \ \text{is tail node,} \ v \ \text{is head node and} \ u,v \in V$
- $\forall v \in V, (\deg_{in}(v) \ge 1) \lor (\deg_{out}(v) \ge 1)$
- ${\small \bigcirc} \ l:V\rightarrow \Sigma \text{ is a labelling function and } \Sigma \text{ is a set of node labels}$

Non-Induced Labelled Subgraph

Let $\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}}, l_{\mathcal{G}})$ and $\mathcal{S} = (V_{\mathcal{S}}, E_{\mathcal{S}}, l_{\mathcal{S}})$ be two labelled graphs. \mathcal{S} is a non-induced subgraph of \mathcal{G} (denoted as $\mathcal{S} \subseteq_{ni} \mathcal{G}$) if and only if:

(日)

 ${\rm \footnotesize 0} \ {\cal S} \subseteq {\cal G} \ {\rm and} \$

 $\exists u, v \in V_{\mathcal{S}}, (u, v) \notin E_{\mathcal{S}} \land (u, v) \in E_{\mathcal{G}}.$

Non-Induced Labelled Subgraph

Let $\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}}, l_{\mathcal{G}})$ and $\mathcal{S} = (V_{\mathcal{S}}, E_{\mathcal{S}}, l_{\mathcal{S}})$ be two labelled graphs. \mathcal{S} is a non-induced subgraph of \mathcal{G} (denoted as $\mathcal{S} \subseteq_{ni} \mathcal{G}$) if and only if:

 $\textcircled{0} \ \mathcal{S} \subseteq \mathcal{G} \text{ and }$

$$\exists u, v \in V_{\mathcal{S}}, (u, v) \notin E_{\mathcal{S}} \land (u, v) \in E_{\mathcal{G}}$$

Non-Induced Subgraph Isomorphism

Given two graphs $\mathcal{P} = (V_{\mathcal{P}}, E_{\mathcal{P}}, l_{\mathcal{P}})$ and $\mathcal{T} = (V_{\mathcal{T}}, E_{\mathcal{T}}, l_{\mathcal{T}})$, \mathcal{P} is considered as non-induced subgraph isomorphic to \mathcal{T} if there exists $\mathcal{S} = (V_{\mathcal{S}}, E_{\mathcal{S}}, l_{\mathcal{S}})$ such that:

<□> <酉> <亘> <亘> <亘>

- **2** $<math> \mathcal{P} \cong \mathcal{S}.$

There are two distinct settings for subgraph isomorphism algorithms

Non-induced settings: The pattern can be a partial embedding of a subgraph in the target graph.

$$\exists v_1, v_2 \in V_{\mathcal{P}} : (v_1, v_2) \notin E_{\mathcal{P}} \land (f(v_1), f(v_2)) \in E_{\mathcal{T}}$$

Induced settings: The pattern is a subgraph in the target graph.

 $\forall v_1, v_2 \in V_{\mathcal{P}} : (v_1, v_2) \notin E_{\mathcal{P}} \implies (f(v_1), f(v_2)) \notin E_{\mathcal{T}}$

Design Principles & Challenges

To ensure the effectiveness of the graph neural network architecture, we consider three crucial properties:

• (R1) Explanability. A proficient subgraph matching framework must identify pattern presence and provide approximate "alignment witnesses".

³⁸ J. Xu, Wickramarathne, and Chawla, "Representing higher-order dependencies in networks".

³⁹Sussman et al., "Matched Filters for Noisy Induced Subgraph Detection".

40 Jiménez-Luna, Grisoni, and Schneider, "Drug discovery with explainable artificial intelligence".

Design Principles & Challenges

To ensure the effectiveness of the graph neural network architecture, we consider three crucial properties:

- (R1) Explanability. A proficient subgraph matching framework must identify pattern presence and provide approximate "alignment witnesses".
- (R2) High-order Dependency. Recent studies indicate complex systems often exhibit dependencies as high as fifth-order³⁸, necessitating scalable solutions for subgraph matching. However, elevating dependency orders can burden the model computationally.

³⁸ J. Xu, Wickramarathne, and Chawla, "Representing higher-order dependencies in networks".

³⁹Sussman et al., "Matched Filters for Noisy Induced Subgraph Detection".

⁴⁰ Jiménez-Luna, Grisoni, and Schneider, "Drug discovery with explainable artificial intelligence".

Design Principles & Challenges

To ensure the effectiveness of the graph neural network architecture, we consider three crucial properties:

- (R1) Explanability. A proficient subgraph matching framework must identify pattern presence and provide approximate "alignment witnesses".
- (R2) High-order Dependency. Recent studies indicate complex systems often exhibit dependencies as high as fifth-order³⁸, necessitating scalable solutions for subgraph matching. However, elevating dependency orders can burden the model computationally.
- (R3) Multi-task with Configurability. Certain scenarios prioritize closely matched patterns over exact matches, such as in vaccine development³⁹. Configuring the model to prioritize such scenarios aligns better with human intuition⁴⁰. Designing a neural model seamlessly accommodating multiple objectives for solving a multi-task problem remains a significant architectural challenge.

³⁸J. Xu, Wickramarathne, and Chawla, "Representing higher-order dependencies in networks".

³⁹Sussman et al., "Matched Filters for Noisy Induced Subgraph Detection".

⁴⁰ Jiménez-Luna, Grisoni, and Schneider, "Drug discovery with explainable artificial intelligence".

Our approach contains three main stages:

- **()** Input representation: Representing the pattern and target graph in matrices
- Feature extraction: Utilizing Graph Learnable Multi-hop Attention layer to form high-level node features
- Task aggregation and intepretation: Performing subgraph matching and matching explaination tasks concurrently

Approach Overview

Algorithm 2: xNeuSM Framework

Input : Node feature matrix X; Intra-graph adjacency matrix A^{in} ; Cross-graph adjacency matrix A^{cr} **Output**: Prediction \hat{y} ; Weighted mapping matrix P $\mathbf{1} \ \mathbf{X}^0 \leftarrow \mathbf{X}$ 2 for l in Range $(1 \dots L_G)$ do 3 $\widehat{\boldsymbol{X}}_{in}^{l} \leftarrow \mathsf{GLeMa}_{l}(\boldsymbol{X}^{l-1}, \boldsymbol{A}^{in})$ 4 $\widehat{\boldsymbol{X}}_{cr}^{l} \leftarrow \mathsf{GLeMa}_{l}(\boldsymbol{X}^{l-1}, \boldsymbol{A}^{cr})$ 5 $X^l \leftarrow \widehat{X}^l_m - \widehat{X}^l_m$ 6 end 7 $(\mathcal{A}^{(1)})^{L_G} \leftarrow \mathsf{ExtractAttnMat}(\mathsf{GLeMa}_{L_G}, \mathbf{X}^{l-1}, \mathbf{A}^{cr})$ 8 $x_{repr}^0 \leftarrow \frac{1}{|V_{\mathcal{P}}|} \sum_{i \in V_{\mathcal{P}}} x_i^{L_G}$, where $x_i^{L_G} \subset \mathbf{X}^{L_G}$ 9 for l in Range $(1 \dots L_{FC} - 1)$ do 10 $x_{renv}^{l} \leftarrow \delta(\boldsymbol{W}_{l} x_{renv}^{l-1} + b_{l})$ 11 end 12 $\hat{y} \leftarrow \sigma(\boldsymbol{W}_{y} \boldsymbol{x}_{rem}^{L_{FC}-1} + b_{y})$ $\sqrt{\mathbf{3}} \ \mathbf{P} \leftarrow \left\{ p_{ij} = \frac{1}{2} \left((a_{ij}^{(1)})^{L_G} + (a_{ji}^{(1)})^{L_G} \right) \right\}, \text{ where } i \in V_{\mathcal{P}}, j \in V_{\mathcal{T}}, \text{ and } (a_{ij}^{(1)})^{L_G} \in (\mathcal{A}^{(1)})^{L_G}$ (日) (四) (三) (三)

Proposition 2

The average approximate error of each element in $\mathcal{A}^{(K)} = \mathbf{Z}^{(K)} \mathbf{X'}^{-1}$ is bound by $(1-a)^{K+1}$

Proof: By Proposition 1, we can derive:

$$\lim_{K \to \infty} \boldsymbol{Z}^{(K)} = \mathcal{A} \boldsymbol{X'}$$
$$\lim_{K \to \infty} \boldsymbol{Z}^{(K)} (\boldsymbol{X'})^{-1} = \mathcal{A}$$

(18)

< □ > < @ > < \alpha > < \al

Let $\mathcal{A}^{(K)} = \mathbf{Z}^{(K)}(\mathbf{X'})^{-1}$ be the approximated attention diffusion matrix at K-hop. We will show that the error $\operatorname{Err}(\mathcal{A} - \mathcal{A}^{(K)}) \leq (1 - \alpha)^{K+1}$, where α is the teleport probability and K is the number of hops.

Firstly, we decompose $\boldsymbol{Z}^{(K)}$ as following.

$$\boldsymbol{Z}^{(K)} = (1-\alpha)^{K} (\mathcal{A}^{(1)})^{K} \boldsymbol{X'} + \alpha (1-\alpha)^{K-1} (\mathcal{A}^{(1)})^{K-1} \boldsymbol{X'} + \dots + \alpha (1-\alpha) (\mathcal{A}^{(1)}) \boldsymbol{X'} + \alpha \boldsymbol{X'}$$

(19)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Firstly, we decompose $Z^{(K)}$ as following. $\boldsymbol{Z}^{(K)} = (1-\alpha)^{K} (\boldsymbol{\mathcal{A}}^{(1)})^{K} \boldsymbol{X'} + \alpha (1-\alpha)^{K-1} (\boldsymbol{\mathcal{A}}^{(1)})^{K-1} \boldsymbol{X'}$ $+\cdots+\alpha(1-\alpha)(\mathcal{A}^{(1)})\mathbf{X'}+\alpha\mathbf{X'}$ Then, we obtain: $\boldsymbol{Z}^{(K)}(\boldsymbol{X'})^{-1} = (1-\alpha)^{K} (\boldsymbol{\mathcal{A}}^{(1)})^{K} + \alpha (1-\alpha)^{K-1} (\boldsymbol{\mathcal{A}}^{(1)})^{K-1}$ $+\cdots+\alpha(1-\alpha)(\mathcal{A}^{(1)})+\alpha$ $= (1 - \alpha)^{K} (\mathcal{A}^{(1)})^{K} + \sum_{k=1}^{K} \alpha (1 - \alpha)^{k} (\mathcal{A}^{(1)})^{k}$

(19)

(20)

Now, let us consider the difference between attention diffusion matrix \mathcal{A} and its approximate form $\mathbf{Z}^{(K)}(\mathbf{X'})^{-1}$.

 \mathcal{A}

Now, let us consider the difference between attention diffusion matrix \mathcal{A} and its approximate form $\mathbf{Z}^{(K)}(\mathbf{X'})^{-1}$.

$$-\mathcal{A}^{(K)} = \mathcal{A} - \mathbf{Z}^{(K)} (\mathbf{X'})^{-1}$$

= $\sum_{k=0}^{\infty} \alpha (1-\alpha)^k (\mathcal{A}^{(1)})^k - (1-\alpha)^K (\mathcal{A}^{(1)})^K - \sum_{k=0}^{K-1} \alpha (1-\alpha)^k (\mathcal{A}^{(1)})^k$

◆□ >
◆□ >

Now, let us consider the difference between attention diffusion matrix \mathcal{A} and its approximate form $\mathbf{Z}^{(K)}(\mathbf{X'})^{-1}$.

$$\begin{aligned} \mathbf{u} - \mathcal{A}^{(K)} &= \mathcal{A} - \mathbf{Z}^{(K)} (\mathbf{X'})^{-1} \\ &= \sum_{k=0}^{\infty} \alpha (1-\alpha)^k (\mathcal{A}^{(1)})^k - (1-\alpha)^K (\mathcal{A}^{(1)})^K - \sum_{k=0}^{K-1} \alpha (1-\alpha)^k (\mathcal{A}^{(1)})^k \\ &= \sum_{k=K}^{\infty} \alpha (1-\alpha)^k (\mathcal{A}^{(1)})^k - (1-\alpha)^K (\mathcal{A}^{(1)})^K \end{aligned}$$

Now, let us consider the difference between attention diffusion matrix \mathcal{A} and its approximate form $\mathbf{Z}^{(K)}(\mathbf{X'})^{-1}$.

$$\begin{aligned} \mathbf{A} - \mathbf{A}^{(K)} &= \mathbf{A} - \mathbf{Z}^{(K)} (\mathbf{X'})^{-1} \\ &= \sum_{k=0}^{\infty} \alpha (1-\alpha)^k (\mathbf{A}^{(1)})^k - (1-\alpha)^K (\mathbf{A}^{(1)})^K - \sum_{k=0}^{K-1} \alpha (1-\alpha)^k (\mathbf{A}^{(1)})^k \\ &= \sum_{k=K}^{\infty} \alpha (1-\alpha)^k (\mathbf{A}^{(1)})^k - (1-\alpha)^K (\mathbf{A}^{(1)})^K \\ &\leq \sum_{k=K}^{\infty} \alpha (1-\alpha)^k (\mathbf{A}^{(1)})^k - \alpha (1-\alpha)^K (\mathbf{A}^{(1)})^K \text{ by } \alpha, a_{ij}^{(1)} \in (0,1) \end{aligned}$$

< □> < @> < \alpha > < \alpha >

Now, let us consider the difference between attention diffusion matrix \mathcal{A} and its approximate form $\mathbf{Z}^{(K)}(\mathbf{X'})^{-1}$.

$$\mathcal{A} - \mathcal{A}^{(K)} = \mathcal{A} - \mathbf{Z}^{(K)} (\mathbf{X'})^{-1}$$

$$= \sum_{k=0}^{\infty} \alpha (1-\alpha)^{k} (\mathcal{A}^{(1)})^{k} - (1-\alpha)^{K} (\mathcal{A}^{(1)})^{K} - \sum_{k=0}^{K-1} \alpha (1-\alpha)^{k} (\mathcal{A}^{(1)})^{k}$$

$$= \sum_{k=K}^{\infty} \alpha (1-\alpha)^{k} (\mathcal{A}^{(1)})^{k} - (1-\alpha)^{K} (\mathcal{A}^{(1)})^{K}$$

$$\leq \sum_{k=K}^{\infty} \alpha (1-\alpha)^{k} (\mathcal{A}^{(1)})^{k} - \alpha (1-\alpha)^{K} (\mathcal{A}^{(1)})^{K} \text{ by } \alpha, a_{ij}^{(1)} \in (0,1)$$

$$\leq \sum_{k=K+1}^{\infty} \alpha (1-\alpha)^{k} (\mathcal{A}^{(1)})^{k}$$
(21)

We also have $a_{ij}^{(1)} \in (0,1)$ so that $(\mathcal{A}^{(1)})^k \le (\mathcal{A}^{(1)})^{k-1}.$

(22)

We also have $a_{ij}^{(1)} \in (0,1)$ so that $(\mathcal{A}^{(1)})^k \le (\mathcal{A}^{(1)})^{k-1}.$ As a consequence, we have: $(\mathcal{A}^{(1)})^k \le \mathcal{A}^{(1)}, \forall k \ge 1$

We also have $a_{ij}^{(1)} \in (0,1)$ so that

$$(\mathcal{A}^{(1)})^k \le (\mathcal{A}^{(1)})^{k-1}$$

As a consequence, we have:

 $(\mathcal{A}^{(1)})^k \le \mathcal{A}^{(1)}, \forall k \ge 1$

Using (23), equation (21) can be derived as follows:

$$\boldsymbol{E} = \boldsymbol{\mathcal{A}} - \boldsymbol{\mathcal{A}}^{(K)} \le \left(\sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k\right) \boldsymbol{\mathcal{A}}^{(1)}$$

(日) (四) (三) (三) (三)

$$Err(\mathcal{A} - \mathcal{A}^{(K)}) = rac{1}{|V|^2} \sum_{i,j} \boldsymbol{E}_{ij}$$

$$Err(\mathcal{A} - \mathcal{A}^{(K)}) = \frac{1}{|V|^2} \sum_{i,j} \boldsymbol{E}_{ij}$$
$$\leq \frac{1}{|V|^2} \sum_{i,j} \left(\left(\sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \right) a_{ij}^{(1)} \right)$$

$$\begin{aligned} Err(\mathcal{A} - \mathcal{A}^{(K)}) &= \frac{1}{|V|^2} \sum_{i,j} \boldsymbol{E}_{ij} \\ &\leq \frac{1}{|V|^2} \sum_{i,j} \left(\left(\sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \right) a_{ij}^{(1)} \right) \\ &\leq \sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \text{ by } a_{ij}^{(1)} \in (0,1) \end{aligned}$$

$$\begin{aligned} Err(\mathcal{A} - \mathcal{A}^{(K)}) &= \frac{1}{|V|^2} \sum_{i,j} \mathbf{E}_{ij} \\ &\leq \frac{1}{|V|^2} \sum_{i,j} \left(\left(\sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \right) a_{ij}^{(1)} \right) \\ &\leq \sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \text{ by } a_{ij}^{(1)} \in (0,1) \\ &\leq \alpha \sum_{k=K+1}^{\infty} (1-\alpha)^k \leq \alpha \frac{(1-\alpha)^{K+1}}{1-(1-\alpha)} \end{aligned}$$

It is easy to observe that $E \in \mathbb{R}^{|V| \times |V|}$. Then we can define the average difference between the exact and approximate attention diffusion matrix as

$$Err(\mathcal{A} - \mathcal{A}^{(K)}) = \frac{1}{|V|^2} \sum_{i,j} \mathbf{E}_{ij}$$
$$\leq \frac{1}{|V|^2} \sum_{i,j} \left(\left(\sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \right) a_{ij}^{(1)} \right)$$
$$\leq \sum_{k=K+1}^{\infty} \alpha (1-\alpha)^k \text{ by } a_{ij}^{(1)} \in (0,1)$$
$$\leq \alpha \sum_{k=K+1}^{\infty} (1-\alpha)^k \leq \alpha \frac{(1-\alpha)^{K+1}}{1-(1-\alpha)}$$
$$\leq (1-\alpha)^{K+1}$$

(25)

(日)

Thus, the Proposition 2 is proven.

Figure 17: Maximal approximation error of each attention coefficient

< □ > < □ > < □ > < □ > < □ > < □ >

Proposition 3

$$lim_{K
ightarrow \infty} oldsymbol{Z}_{eta}^{(K)} = \mathcal{A}_{\eta} oldsymbol{X'}$$
Proposition 3

$$lim_{K\to\infty} \boldsymbol{Z}_{\beta}^{(K)} = \mathcal{A}_{\eta} \boldsymbol{X'}$$

Proof: With $\beta_v \in (0,1), \forall v \in V$:

$$(\eta_v)_k = \beta_v (1 - \beta_v)^k > 0$$

(26)

Proposition 3

$$lim_{K \to \infty} \boldsymbol{Z}_{\beta}^{(K)} = \mathcal{A}_{\eta} \boldsymbol{X'}$$

Proof:

With $\beta_v \in (0,1), \forall v \in V$:

$$(\eta_v)_k = \beta_v (1 - \beta_v)^k > 0$$

This results in the important property:

$$\forall v \in V, \sum_{k=0}^{\infty} (\eta_v)_k = \sum_{k=0}^{\infty} \beta_v (1-\beta_v)^k = \frac{\beta_v}{1-(1-\beta_v)} = 1$$

(26)

(27)

Let $\eta_k = \{(\eta_v)_k\}_{v=1}^{|V|}$ be the attention decay vector at the k-th hop. With the property in (27), we can generalize equation (9) as follows:

$$\begin{cases} (\mathcal{A}^{(1)})^0 &= \boldsymbol{I} \\ \mathcal{A}_{\eta} &= \sum_{k=0}^{\infty} \eta_k (\mathcal{A}^{(1)})^k. \end{cases}$$

(28)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $\eta_k = \{(\eta_v)_k\}_{v=1}^{|V|}$ be the attention decay vector at the k-th hop. With the property in (27), we can generalize equation (9) as follows:

$$\begin{cases} (\mathcal{A}^{(1)})^0 &= \boldsymbol{I} \\ \mathcal{A}_{\eta} &= \sum_{k=0}^{\infty} \eta_k (\mathcal{A}^{(1)})^k. \end{cases}$$

Then, we can approximate $\mathcal{A}_\eta oldsymbol{X'}$ as:

$$\begin{cases} \boldsymbol{Z}^{(0)} &= \boldsymbol{X'} \\ \boldsymbol{Z}^{(k)}_{\beta} &= (\vec{1} - \beta) \boldsymbol{\mathcal{A}}^{(1)} \boldsymbol{Z}^{(k-1)} + \beta \boldsymbol{Z}^{(0)}, \ k = \overline{1, K} \end{cases}$$

(28)

(29)

Firstly, we decompose all elements of $oldsymbol{Z}_{eta}^{(k)}$:

$$\begin{split} \boldsymbol{Z}_{\beta}^{(k)} &= \underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k \text{ times}} \boldsymbol{X'} + \underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k-1 \text{ times}} \beta \boldsymbol{X'} \\ &+ \underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k-2 \text{ times}} \beta \boldsymbol{X'} + \dots + (\vec{1} - \beta)\mathcal{A}^{(1)}\beta \boldsymbol{X'} + \beta \boldsymbol{X'} \end{split}$$

(30)

Firstly, we decompose all elements of $oldsymbol{Z}_{eta}^{(k)}$:

$$\begin{split} \boldsymbol{Z}_{\beta}^{(k)} &= \underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k \text{ times}} \boldsymbol{X'} + \underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k-1 \text{ times}} \beta \boldsymbol{X'} \\ &+ \underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k-2 \text{ times}} \beta \boldsymbol{X'} + \dots + (\vec{1} - \beta)\mathcal{A}^{(1)}\beta \boldsymbol{X'} + \beta \boldsymbol{X'} \end{split}$$

(30)

(31)

We also have:

$$\mathcal{A}_{\eta} \mathbf{X}' = \left(\sum_{k=0}^{\infty} \eta_k (\mathcal{A}^{(1)})^k \right) \mathbf{X}'$$

= $\eta_0 \mathbf{X}' + \eta_1 \mathcal{A}^{(1)} \mathbf{X}' + \eta_2 (\mathcal{A}^{(1)})^2 \mathbf{X}' + \dots$
= $\beta \mathbf{X}' + \beta (\vec{1} - \beta) \mathcal{A}^{(1)} \mathbf{X}' + \beta (\vec{1} - \beta)^2 (\mathcal{A}^{(1)})^2 \mathbf{X}' + \dots$

To prove Proposition 3, we need to prove these lemmas.

Lemma 1

$$\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \beta \mathbf{X'} = \beta (\vec{1}-\beta)^k (\mathcal{A}^{(1)})^k \mathbf{X'}$$

Lemma 1

$$\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \beta \mathbf{X'} = \beta (\vec{1}-\beta)^k (\mathcal{A}^{(1)})^k \mathbf{X'}$$

Proof:

Due to the commutative property of row-wise multiplication between a vector and a matrix, we can write:

$$(\vec{1}-\beta)\mathcal{A}^{(1)}=\mathcal{A}^{(1)}(\vec{1}-\beta).$$

(32)

Lemma 1

$$\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \beta \mathbf{X'} = \beta (\vec{1}-\beta)^k (\mathcal{A}^{(1)})^k \mathbf{X'}$$

Proof:

Due to the commutative property of row-wise multiplication between a vector and a matrix, we can write:

$$(\vec{1}-\beta)\mathcal{A}^{(1)}=\mathcal{A}^{(1)}(\vec{1}-\beta).$$

This leads to:

$$\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \beta \mathbf{X'} = \underbrace{(\vec{1}-\beta)(\vec{1}-\beta)\dots}_{k \text{ times}} \underbrace{\mathcal{A}^{(1)}\mathcal{A}^{(1)}\dots}_{k \text{ times}} \beta \mathbf{X'}$$

$$= (\vec{1}-\beta)^k (\mathcal{A}^{(1)})^k \beta \mathbf{X'}$$

$$= \beta (\vec{1}-\beta)^k (\mathcal{A}^{(1)})^k \mathbf{X'}.$$
(33)

(32)

Lemma 2

$$\lim_{k\to\infty} \underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \boldsymbol{X'} = \vec{0}.$$

Lemma 2

$$\lim_{k\to\infty}\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \boldsymbol{X'} = \vec{0}.$$

Proof:

Because $\beta_v \in (0,1)$, it follows that $(1 - \beta_v) \in (0,1)$. This implies that:

 $\lim_{k \to \infty} (1 - \beta_v)^k = 0.$

Lemma 2

$$\lim_{k\to\infty}\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \boldsymbol{X'} = \vec{0}.$$

Proof:

Because $\beta_v \in (0,1)$, it follows that $(1 - \beta_v) \in (0,1)$. This implies that:

 $\lim_{k \to \infty} (1 - \beta_v)^k = 0.$

We also have:

$$(\vec{1} - \beta)^k = \{(1 - \beta_v)^k\}_{v=1}^{|V|},\$$

(34)

Lemma 2

$$\lim_{k\to\infty}\underbrace{(\vec{1}-\beta)\mathcal{A}^{(1)}\dots}_{k \text{ times}} \boldsymbol{X'} = \vec{0}.$$

Proof:

Because $\beta_v \in (0,1)$, it follows that $(1 - \beta_v) \in (0,1)$. This implies that:

 $\lim_{k \to \infty} (1 - \beta_v)^k = 0.$

We also have:

so that

 $(\vec{1} - \beta)^k = \{(1 - \beta_v)^k\}_{v=1}^{|V|},\$

$$\lim_{k \to \infty} (\vec{1} - \beta)^k = \{\lim_{k \to \infty} (1 - \beta_v)^k\}_{v=1}^{|V|} = \vec{0}.$$

(34)

With Lemma 1 and (35), we can conclude:

$$\lim_{k \to \infty} \underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k \text{ times}} \boldsymbol{X'} = \lim_{k \to \infty} (\vec{1} - \beta)^k (\mathcal{A}^{(1)})^k \boldsymbol{X'}$$

With Lemma 1 and (35), we can conclude:

$$\lim_{k \to \infty} \underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k \text{ times}} \boldsymbol{X'} = \lim_{k \to \infty} (\vec{1} - \beta)^k (\mathcal{A}^{(1)})^k \boldsymbol{X'}$$
$$= (\lim_{k \to \infty} (\vec{1} - \beta)^k) (\lim_{k \to \infty} (\mathcal{A}^{(1)})^k \boldsymbol{X'})$$

With Lemma 1 and (35), we can conclude:

$$\lim_{k \to \infty} \underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k \text{ times}} \boldsymbol{X'} = \lim_{k \to \infty} (\vec{1} - \beta)^k (\mathcal{A}^{(1)})^k \boldsymbol{X'}$$
$$= (\lim_{k \to \infty} (\vec{1} - \beta)^k) (\lim_{k \to \infty} (\mathcal{A}^{(1)})^k \boldsymbol{X'})$$
$$= \vec{0} (\lim_{k \to \infty} (\mathcal{A}^{(1)})^k \boldsymbol{X'})$$
$$= O$$

(36)

By proving Lemma 1 and Lemma 2, we can prove the Proposition 3 as follows.

$$\lim_{k \to \infty} \mathbf{Z}_{\beta}^{(k)} = \lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k \text{ times}} \mathbf{X'} \right]$$

+
$$\lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k-1 \text{ times}} \beta \mathbf{X'} + \dots + (\vec{1} - \beta) \mathcal{A}^{(1)} \beta \mathbf{X'} + \beta \mathbf{X'} \right]$$

$$\lim_{k \to \infty} \mathbf{Z}_{\beta}^{(k)} = \lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k \text{ times}} \mathbf{X'} \right]$$

+
$$\lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots}_{k-1 \text{ times}} \beta \mathbf{X'} + \dots + (\vec{1} - \beta) \mathcal{A}^{(1)} \beta \mathbf{X'} + \beta \mathbf{X'} \right]$$

=
$$O + \lim_{k \to \infty} \left[\beta (\vec{1} - \beta)^{k-1} (\mathcal{A}^{(1)})^{k-1} \mathbf{X'} + \dots + \beta (\vec{1} - \beta) \mathcal{A}^{(1)} \mathbf{X'} + \beta \mathbf{X'} \right]$$

$$\lim_{k \to \infty} \mathbf{Z}_{\beta}^{(k)} = \lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots \mathbf{X'}}_{k \text{ times}} \mathbf{X'} \right]$$

+
$$\lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta) \mathcal{A}^{(1)} \dots \beta \mathbf{X'}}_{k-1 \text{ times}} + \cdots + (\vec{1} - \beta) \mathcal{A}^{(1)} \beta \mathbf{X'} + \beta \mathbf{X'} \right]$$

=
$$O + \lim_{k \to \infty} \left[\beta (\vec{1} - \beta)^{k-1} (\mathcal{A}^{(1)})^{k-1} \mathbf{X'} + \cdots + \beta (\vec{1} - \beta) \mathcal{A}^{(1)} \mathbf{X'} + \beta \mathbf{X'} \right]$$

=
$$\lim_{k \to \infty} \left[\eta_{k-1} (\mathcal{A}^{(1)})^{k-1} \mathbf{X'} + \cdots + \eta_1 \mathcal{A}^{(1)} \mathbf{X'} + \eta_0 \mathbf{X'} \right]$$

$$\lim_{k \to \infty} \mathbf{Z}_{\beta}^{(k)} = \lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots \mathbf{X'}}_{k \text{ times}} \mathbf{X'} \right]$$

+
$$\lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots \beta \mathbf{X'}}_{k-1 \text{ times}} \beta \mathbf{X'} + \dots + (\vec{1} - \beta)\mathcal{A}^{(1)}\beta \mathbf{X'} + \beta \mathbf{X'} \right]$$

=
$$O + \lim_{k \to \infty} \left[\beta (\vec{1} - \beta)^{k-1} (\mathcal{A}^{(1)})^{k-1} \mathbf{X'} + \dots + \beta (\vec{1} - \beta)\mathcal{A}^{(1)} \mathbf{X'} + \beta \mathbf{X'} \right]$$

=
$$\lim_{k \to \infty} \left[\eta_{k-1} (\mathcal{A}^{(1)})^{k-1} \mathbf{X'} + \dots + \eta_1 \mathcal{A}^{(1)} \mathbf{X'} + \eta_0 \mathbf{X'} \right]$$

=
$$\lim_{k \to \infty} \left[\left(\sum_{k=0}^{k-1} \eta_k (\mathcal{A}^{(1)})^k \right) \mathbf{X'} \right]$$

$$\lim_{k \to \infty} \mathbf{Z}_{\beta}^{(k)} = \lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k \text{ times}} \mathbf{X'} \right]$$

$$+ \lim_{k \to \infty} \left[\underbrace{(\vec{1} - \beta)\mathcal{A}^{(1)} \dots}_{k-1 \text{ times}} \beta \mathbf{X'} + \dots + (\vec{1} - \beta)\mathcal{A}^{(1)}\beta \mathbf{X'} + \beta \mathbf{X'} \right]$$

$$= O + \lim_{k \to \infty} \left[\beta(\vec{1} - \beta)^{k-1}(\mathcal{A}^{(1)})^{k-1}\mathbf{X'} + \dots + \beta(\vec{1} - \beta)\mathcal{A}^{(1)}\mathbf{X'} + \beta \mathbf{X'} \right]$$

$$= \lim_{k \to \infty} \left[\eta_{k-1}(\mathcal{A}^{(1)})^{k-1}\mathbf{X'} + \dots + \eta_1\mathcal{A}^{(1)}\mathbf{X'} + \eta_0\mathbf{X'} \right]$$

$$= \lim_{k \to \infty} \left[\left(\sum_{k=0}^{k-1} \eta_k(\mathcal{A}^{(1)})^k \right) \mathbf{X'} \right]$$

$$= \mathcal{A}_{\eta}\mathbf{X'} \text{ as } \mathcal{A}_{\eta} = \sum_{k=0}^{\infty} \eta_k(\mathcal{A}^{(1)})^k \text{ in (28).}$$