

GRADUATION THESIS Al-Powered Decision Support System for Antiviral Pharmaceutical Formulation

Advisors: Assoc. Prof. Quan Thanh Tho, PhD Mr. Bang Ngoc Bao Tam, MEng

Student: Nguyen Quang Duc - 1810118

TABLE OF CONTENTS

01

INTRODUCTION

Problem Definition and Solutions Overview

BACKGROUNDS

Computer Science Backgrounds

SOLUTIONS Details of Designed System

04 E

EXPERIMENTS

Evaluations of Designed System

CONCLUSION

Summary and Future Developments

3

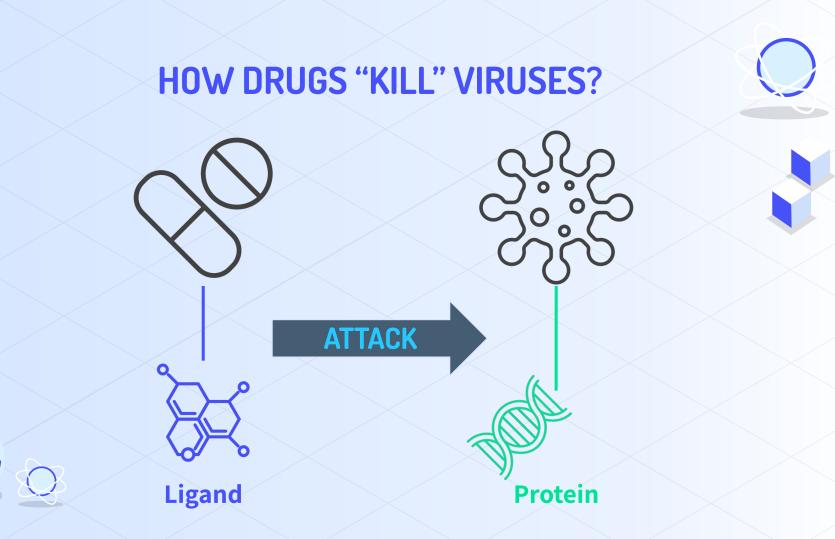
VIRUSES AND THEIR MAIN PROTEINS

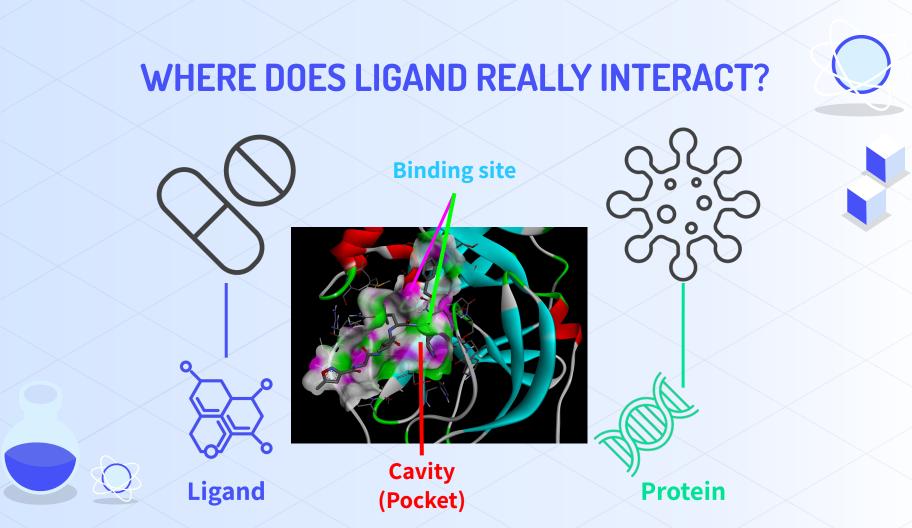
Protein A

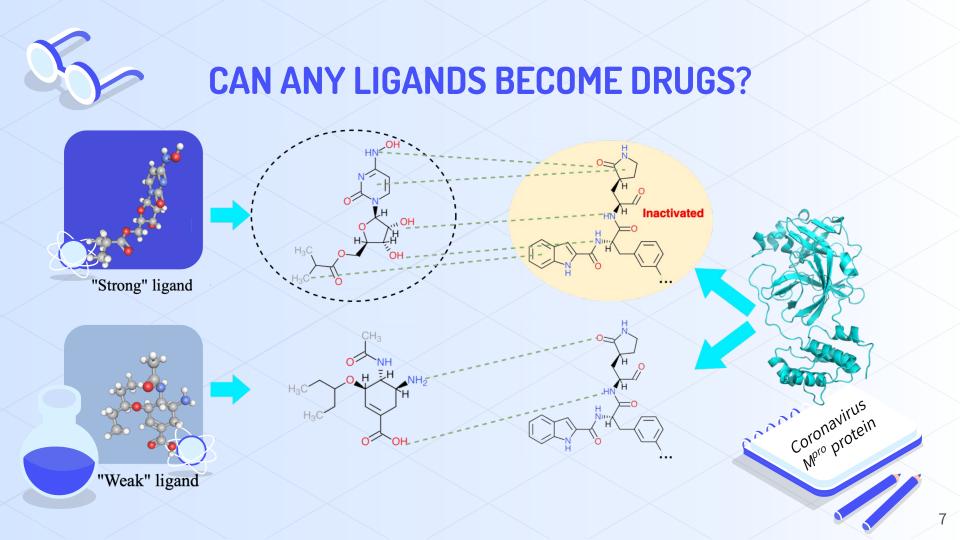
200

0

0


Protein B




HOW DRUGS "KILL" VIRUSES?

DRUG DESIGN AT EARLY STAGE "Designing strong ligands"

lmage ↑↓	Molecule	↑↓	MW 11	<mark>cLogP</mark> ↑↓	TPSA 11	Rotatable Bonds	Fraction sp3 ↑↓	HBA ↑↓	HBD $\uparrow\downarrow$	Covalent Warhead
H	CLI-SEL-cf46d3af-1 CN1C[C@@H]2CC[C@H](C1)N(S(=0) (=0)c1cccc3ccccc1 3)C2 Check Availability on Manifold		330.14	2.55	40.62	2	0.44	3	0	false
J. J.	ALP-POS-01611061-1 Duplicate of: MAT-POS-50a80394-8 CC1(C)CN(c2encc3c cccc23)C(=0)C12CN (S(=0) (=0)CC1(C#N)CC1)C c1ccc(C1)cc12 (3-aminopyridine-like Ordered Check Availability on Manifold		534.15	4.65	94.37	4	0.39	5	0	false

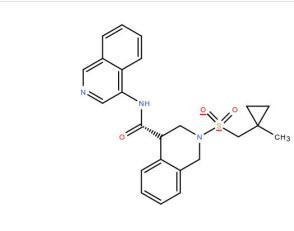
INTRODUCTION

Problem Definition and Solution Overview

CROWDSOURCING DRUG DESIGN

PURPOSE

000

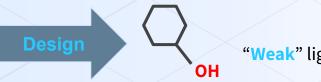

Utilize the power of community

Draw or enter SMILES (add multiple by pressing "Add" after each entry)

Warning: Structural alerts found (see below). Note: these are just warnings, you can still submit the molecule.

CC1(CS(=0)(=0)N2Cc3ccccc3C(C(=0)Nc3cncc4ccccc34)C2)CC1

Add



BUT THE PROBLEM IS...

NON-EXPERTS

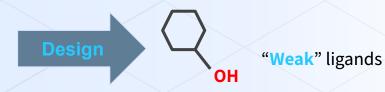
A large number and has more time

"Weak" ligands

EXPERTS

Not many experts and they do not have much time

ŎН Cl "Strong" ligands OH


S-

BUT THE PROBLEM IS...

NON-EXPERTS

A large number and has more time

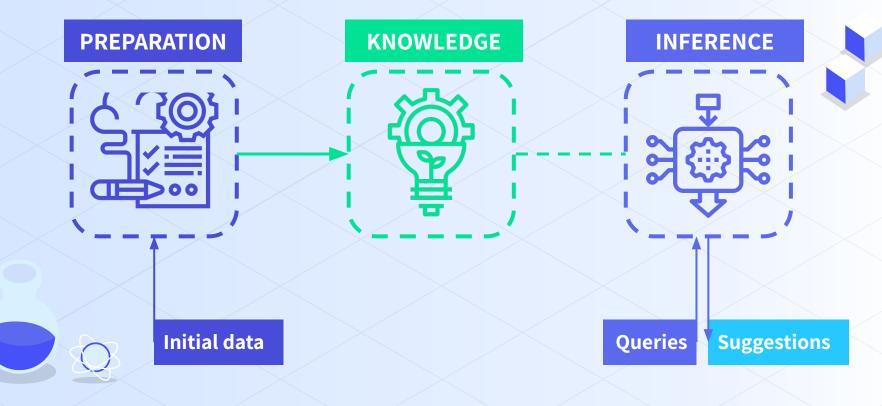
EXPERTS

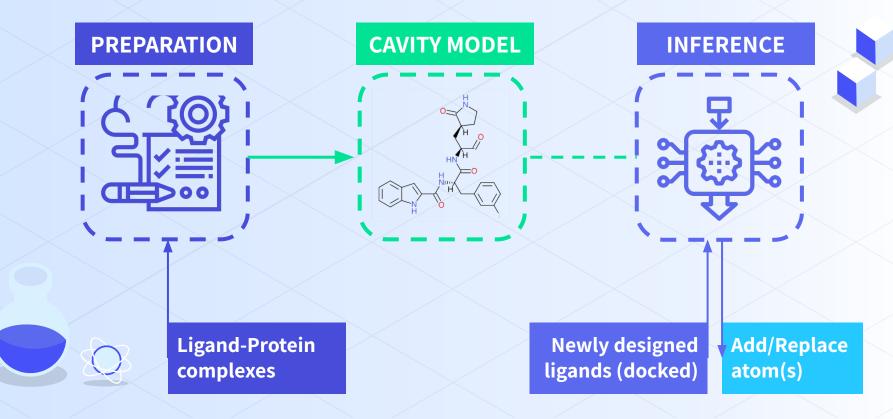
Not many experts and they do not have much time

HOW TO EFFECTIVELY UTILIZE COMMUNITY POWER?

AN INTELLIGENCE DECISION SUPPORT SYSTEM

To make the designed drugs better and better




BACKGROUNDS

Computer Science Backgrounds

DECISION SUPPORT SYSTEM IN A NUTSHELL

DECISION SUPPORT SYSTEM IN OUR SITUATION

THE INITIAL PROBLEM BREAKS INTO

PREPARATION

- 1. Identifying Drug-Protein Interactions
 - Ligand-Protein complexes Interactions

2. Building Cavity Model for Target Protein

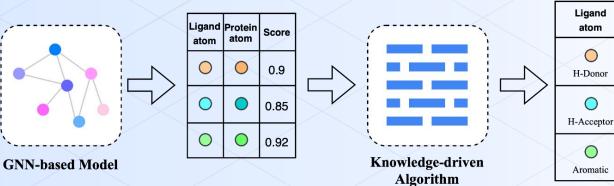
Interactions — Cavity Model

INFERENCE

- 3. Building Algorithm for Recommending
 - Newly Designed Ligands

Suggestions

Cavity Model


SOLUTIONS

Details of Designed System

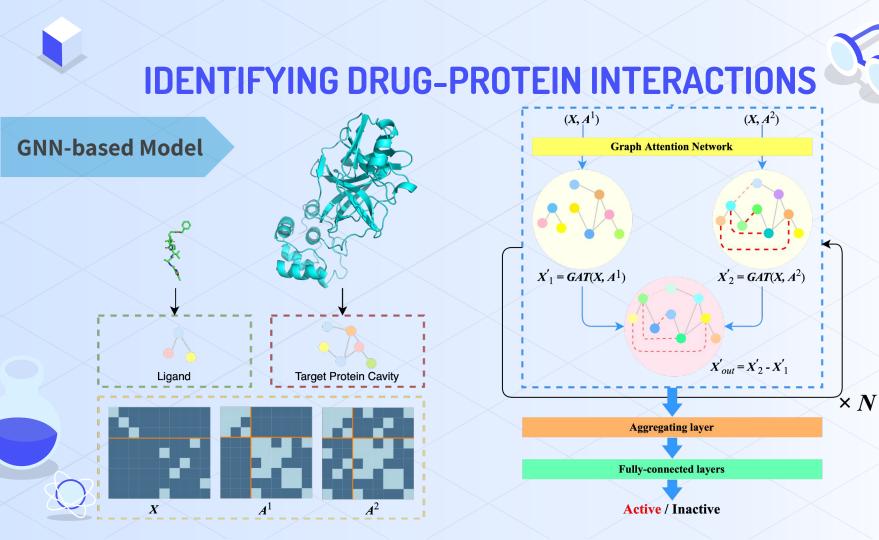
TIONS 5

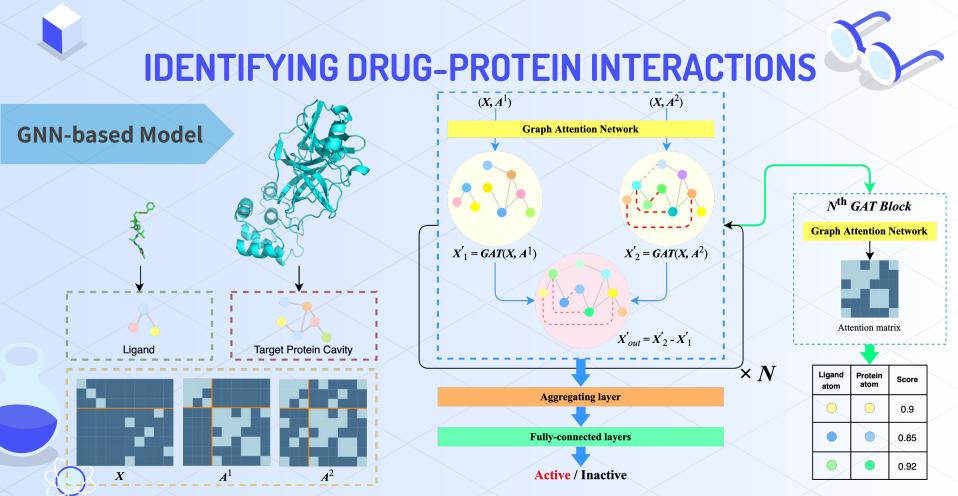
IDENTIFYING DRUG-PROTEIN INTERACTIONS

OVERALL PIPELINE

Protein

atom

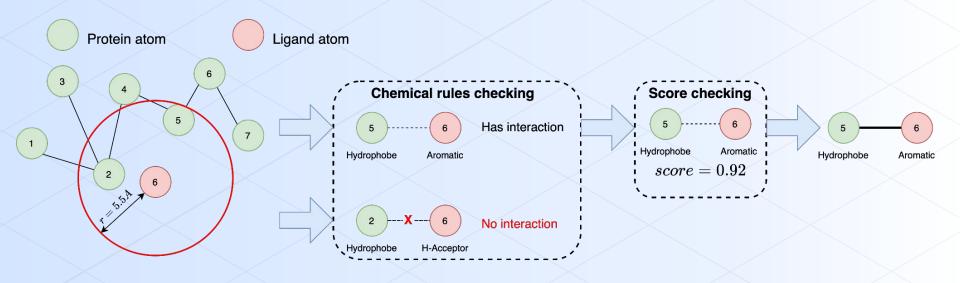

 \bigcirc

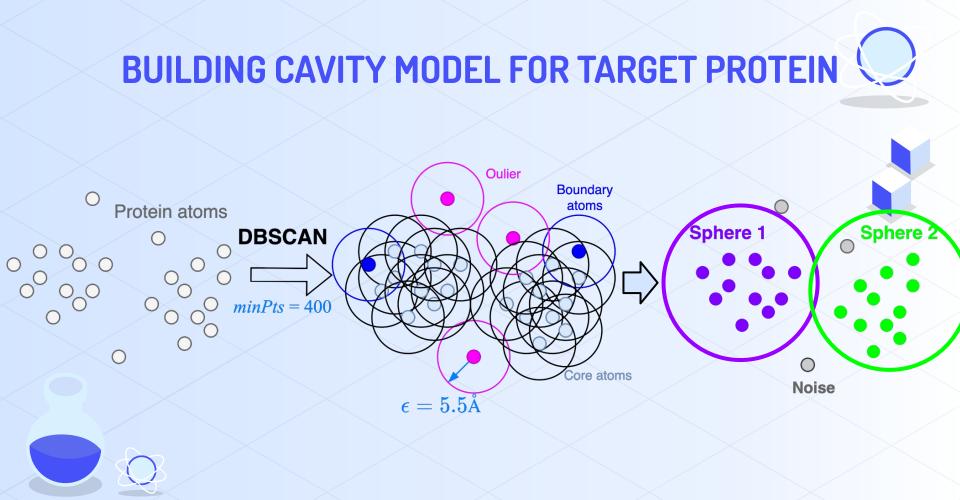

H-Acceptor

 \bigcirc

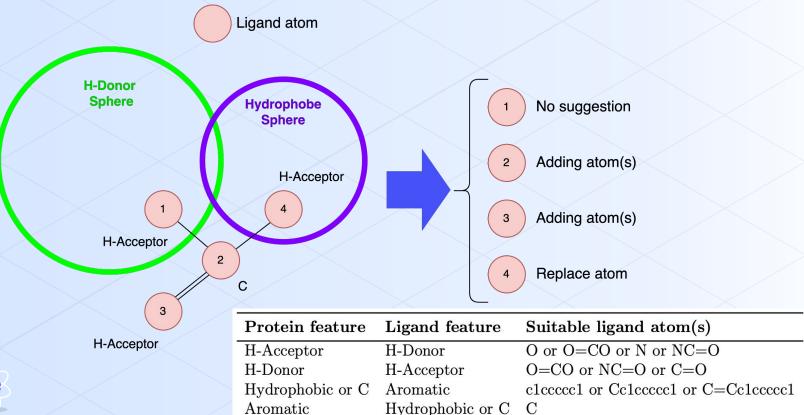
H-Donor

Hydrophobe


GNN-based Model

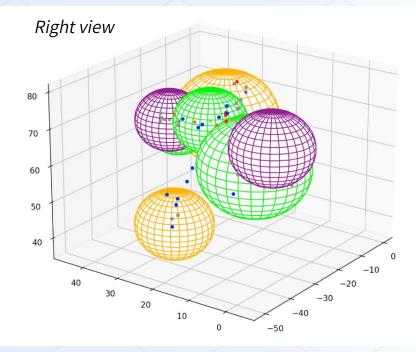

IMPROVEMENTS

IDENTIFYING DRUG-PROTEIN INTERACTIONS


Algorithm

BUILDING ALGORITHM FOR RECOMMENDING

EXPERIMENTS


Evaluations of Designed System

RESULTS OF INTERACTION IDENTIFICATION

20 complexes manually annotated	No.	Complex name	Recall	No.	Complex name	Recall	
	1	6LZE	0.82	11	6XQS	0.93	
	2	6M0K	0.58	12	$7\mathrm{E}19$	0.73	
	3	6WTK	1.00	13	7 JU7	0.21	
	4	6XA4	0.56	14	7KX5	0.86	
	5	$6 \mathrm{XBG}$	1.00	15	7L0D	0.86	
	6	6XBH	1.00	16	$7 \mathrm{LMD}$	0.50	
	7	6XBI	0.94	17	$7 \mathrm{LME}$	0.63	
	8	6XCH	1.00	18	$7 \mathrm{LMF}$	0.83	
	9	$6 \mathrm{XFN}$	0.40	19	$7 \mathrm{LMH}$	1.00	
	10	6XHM	0.88	20	$7 \mathrm{LMJ}$	1.00	
	Α	verage Recall	0.79				

CAVITY MODEL FOR TARGET PROTEIN

Left view 80 70 60 50 40 0 0 10 -10-20 20 -30 30 -40 40 -50 **H**-Donor

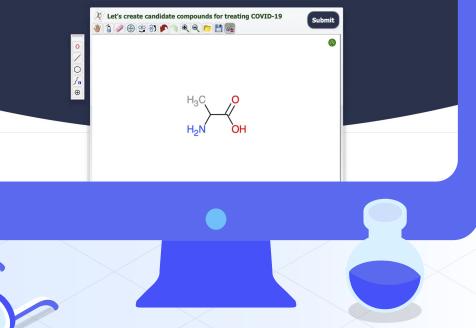
Hydrophobe

H-Acceptor

THE PERFORMANCE OF DESIGNED SYSTEM

better than without any suggestions

	W/O SUGGESTION	W SUGGESTIONS
Number of participants	26	5
Number of ligands	100	100
Mean docking score	-4.91	-5.67
Standard deviation of docking scores	1.46	1.41


29

Computer-Aided Drug Design System

From BK with Love $\heartsuit \heartsuit \heartsuit$

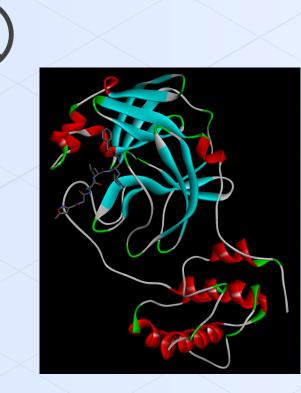
CONCLUSION

Summary and Future Developments

• THE END •

Thank You for Listening!

Nguyen Quang Duc (Mr.) | Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology | www.cse.hcmut.edu.vn | Skype: nguyenquangduc2000 A3 Building, 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam M (+84) 898 986 370 | E duc.nguyenquang@hcmut.edu.vn

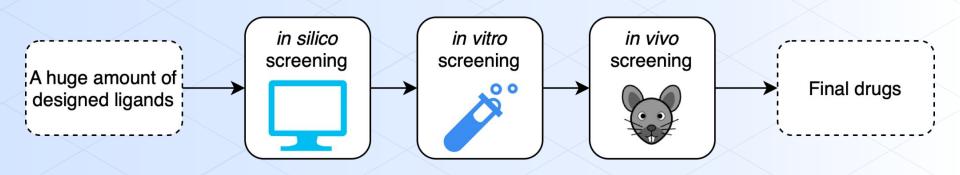


Antiviral Drugs?

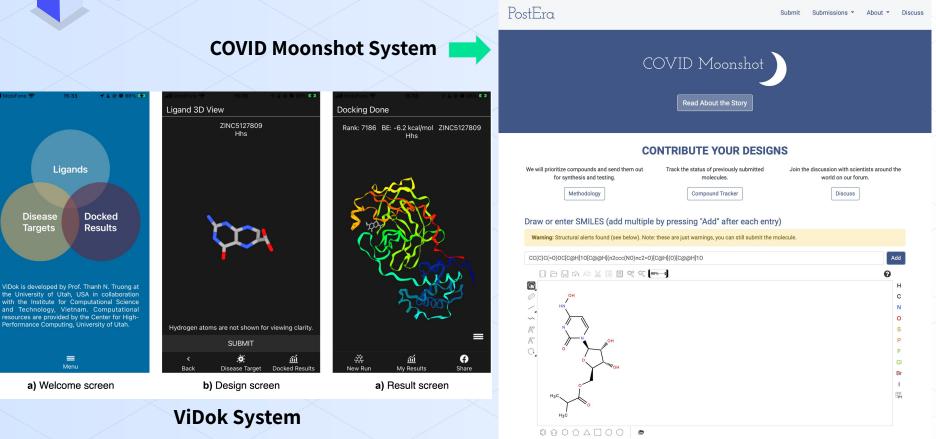
COVID-19 caused by Coronavirus has many serious negative impacts all over the world.

The search for COVID-19 antiviral drugs is in high demand.

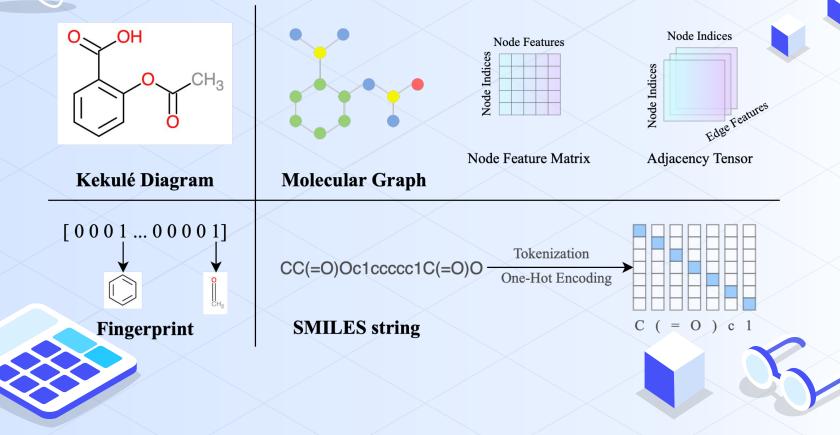
HOW DRUGS "KILL" VIRUSES?


Ligand

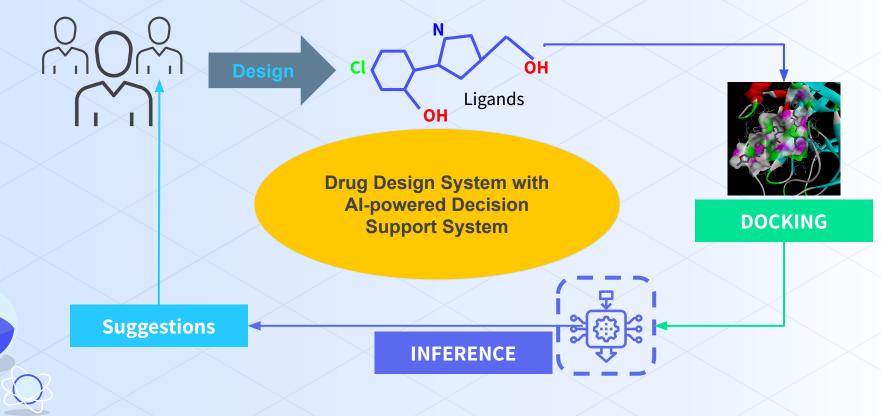
Protein



DRUG DISCOVERY PROCESS



CROWSOURCING DRUG DESIGN SYSTEMS



MOLECULAR PRESENTATION

OVERVIEW BIG SYSTEM

 $x^{complex} =$

 x_i

 $i \in ligand$

BASELINE MODEL COMPUTATION

 $\boldsymbol{X} = \{x_1, x_2, \dots, x_M\}$ with $x_i \in \mathbb{R}^F$

 $oldsymbol{A}_{ij}^1 = \left\{ egin{array}{ccc} 1 & \mbox{if i and j are connected by covalent bond or $i=j$} \\ 0 & \mbox{otherwise} \end{array}
ight.$

 $\boldsymbol{A}_{ij}^{2} = \begin{cases} \boldsymbol{A}_{ij}^{1} & \text{if } i, j \in \text{protein or } i, j \in \text{ligand} \\ e^{-(d_{ij}-\mu)^{2}/\sigma} & \text{if } i \in \text{protein and } j \in \text{ligand}, \\ & \text{or if } i \in \text{ligand and } j \in \text{protein} \\ 0 & \text{otherwise} \end{cases}$

 $\rightarrow y = \sigma(\boldsymbol{W}_c x + b)$

 $A \times L$

 $X'_1 = GAT(X, A^1)$ $X'_2 = GAT(X, A^2)$ $X'_{out} = X'_2 - X'_1$

ATTENTION INFERENCE ALGORITHM

```
Algorithm 1: Attention Inference
  Input : GNN-based model with attention mechanism \mathcal{M},
               Input for GNN-based model (\mathbf{X}, \mathbf{A}^1, \mathbf{A}^2),
               The total number of atoms M.
  Output: List of high interaction probability pairs
               P = \{(i, j, s) | i \in ligand \& j \in protein \& s >= 0.5\}
  \mathcal{M}(\boldsymbol{X}, \boldsymbol{A}^1, \boldsymbol{A}^2)
  lastGATBlock \leftarrow GetLastGATBlock(\mathcal{M})
  \mathcal{A} = \{a_{ij}\} \leftarrow GetNormalizedAttentionMatrix(lastGATBlock)
  oldsymbol{P} \leftarrow \emptyset
  for i in Range(0, M) do
      for j in Range(i + 1, M) do
           if a_{ij} + a_{ji} \ge 1 then
                \boldsymbol{P} \leftarrow \boldsymbol{P} \cup \{(i, j, \frac{a_{ij}+a_{ji}}{2})\}
           end
      end
 \mathbf{end}
  return P
```

IMPROVEMENT 1

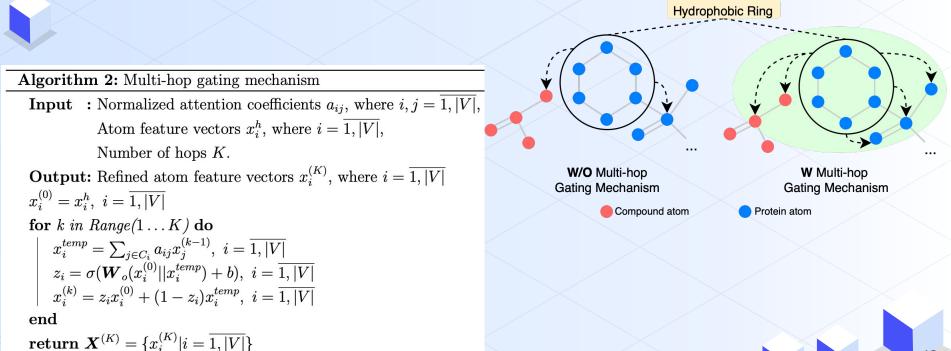
Feature	Value			
Or	riginal			
Atom type	C,N,O,S,F,P,Cl,Br,B,H (onehot)			
Degree of atom	0, 1, 2, 3, 4, 5, 6 (onehot)			
Number of H atoms attached	0, 1, 2, 3, 4 (onehot)			
Implicit valence electrons	0, 1, 2, 3, 4, 5 (onehot)			
In aromatic	0 or 1			
Added in Improvement 1				
Hydrogen D/A	$[is_donor, is_acceptor]$			
Pos/Neg Ionizable	$[is_pos, is_neg]$			
In lumped hydrophobe	0 or 1			

IMPROVEMENT 2

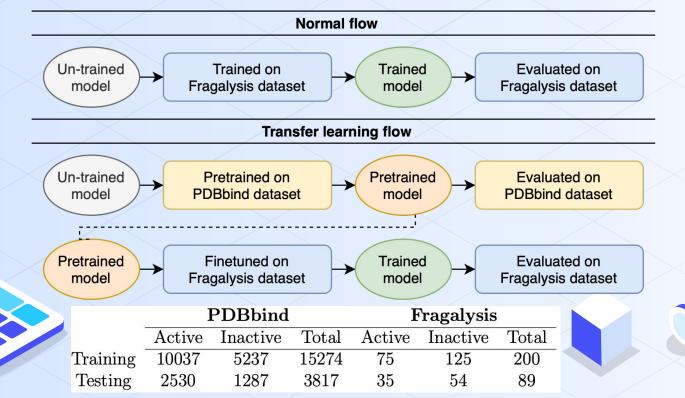
Old Aggregation Layer:

1

$$x^{complex} = \sum_{i \in ligand} x_i$$


$$x^{complex} = (x^{ligand} || x^{protein})$$
 $x^{ligand} = \sum x_i$

 $i \in ligand$


Improved Aggregation Layer:

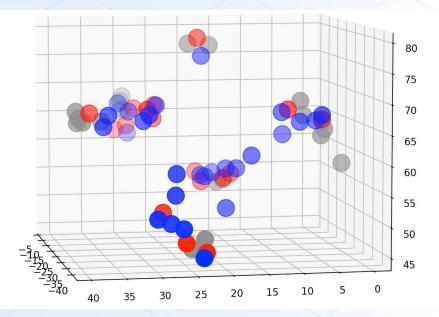
$$\begin{cases} x^{protein} = \sum_{i \in P} x_i \\ P = \{x_p, p \in protein | \exists c \in ligand : dist(p, c) < 5.5 \text{\AA} \} \end{cases}$$

IMPROVEMENT 3

TRAINING AND TESTING FLOWS

RESULTS OF PREDICTING PHARMACOLOGICALLY ACTIVE

	Model	Directly	Pretrained	Finetuned		
	with settings	trained on	on	on		
		Fragalysis	$\mathbf{PDBbind}$	Fragalysis		
	String	y-based represe	ntation			
	DeepDTA	0.870	0.849	0.862		
	String-based +	Feature matri	$x \ representatio$	n		
	DrugVQA	0.853	0.819	0.820		
Graph-based + String-based representation						
	GraphDTA-GINConvNet	0.885	0.838	0.874		
	GraphDTA-GATNet	0.886	0.814	0.890		
	GraphDTA-GCNNet	0.868	0.836	0.862		
	$\operatorname{GraphDTA-GAT_GCN}$	0.874	0.835	0.874		
	Graph	n-based represe	ntation			
	Baseline model	0.841	0.758	0.859		
	Baseline $+$ Ipmt 1	0.865	0.787	0.896		
	$Baseline + Ipmt \ 2$	0.877	0.785	0.915		
	$Baseline + Ipmt \ 3$	0.870	0.793	0.936		
	Baseline + Ipmt $1,2$	0.822	0.813	0.930		
	Baseline + Ipmt $1,2,3$	0.868	0.820	0.938		

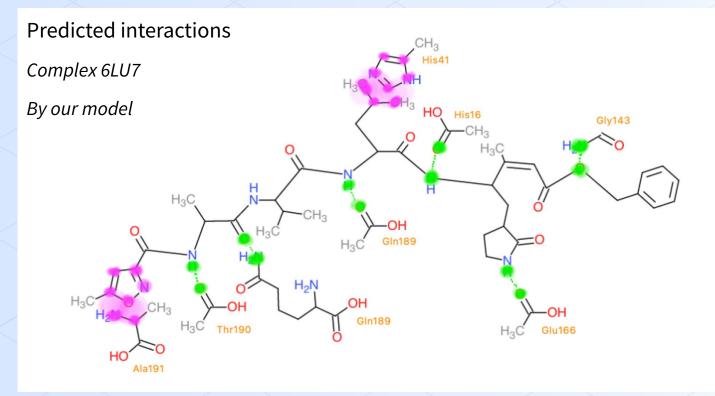

KNOWLEDGE-DRIVEN ALGORITHM

```
Algorithm 3: Nearest Neighbors combined with chemical rules
  Input : High interaction probability pairs
             P = \{(i, j, s) | i \in ligand \& j \in protein \& s >= 0.5\},\
             ligand, protein,
             Distance threshold \epsilon_d,
             Chemical rules \mathcal{R}.
  Output: Interaction list
             I = \{(i, j, x_i, x_j) | i \in ligand \& j \in protein \& x is feature vector\}
  I \leftarrow \emptyset
 \mathcal{N} \leftarrow InitNearestNeighbor(protein \rightarrow atoms)
  for l_{-atom} in liquid do
      listNearAtoms \leftarrow GetNearAtoms(\mathcal{N}, \epsilon_d, l_atom)
      for p_atominlistNearAtoms do
          interaction \leftarrow checkInteractionType(\mathcal{R}, l_{atom}, p_{atom})
          if interaction is Hydrogen then
              x_i, x_j \leftarrow CalculateFeature(l_atom, p_atom)
              I \leftarrow I \cup \{(l_atom, p_atom, x_i, x_i)\}
          end
          if interaction is Hydrophobic then
              hasHighProb \leftarrow HasHighProb(\mathbf{P}, l\_atom, p\_atom)
              if not hasHighProb then
                  continue
              end
              x_i, x_j \leftarrow CalculateFeature(l\_atom, p\_atom)
              I \leftarrow I \cup \{(l\_atom, p\_atom, x_i, x_j)\}
          end
     \mathbf{end}
 end
  return I
```

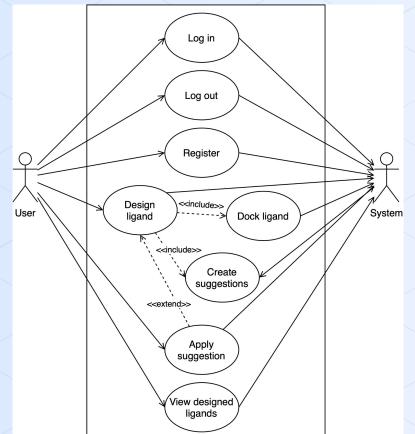
DETECTED INTERACTIONS


- Crawled from ViDok: Top 1000
- After processed (usable): 918
- Classification results:
 - **Active:** 915
 - Inactive: 3
- Interaction protein atoms detected from 915 active complexes:
 - **H-Donor:** 9150
 - **H-Acceptor:** 599
 - Hydrophobe: 4831

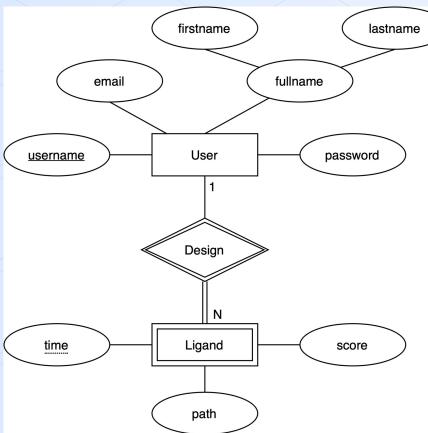
Interaction protein atoms detected from top 1000 designed ligand-protein complexes on ViDok system



PAIRWISE INTERACTION EXAMPLES



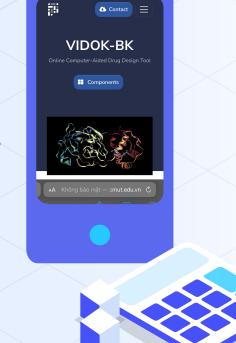
CAVITY MODEL FOR TARGET PROTEIN


SPHERE LIST OF PHARMACOPHORE MODEL

Feature	X	Y	\mathbf{Z}	Radius
Hydrogen Donor	-30.225	3.831	66.757	5.5
Hydrogen Donor	-19.0313	16.6303	56.0029	13.623
Hydrogen Donor	-21.6388	27.2708	66.9083	8.8003
Hydrogen Donor	-24.0361	34.8547	64.6313	7.628
Hydrogen Donor	-11.6326	29.4802	66.0156	7.2845
Hydrogen Donor	-8.198	28.631	61.431	5.5
Hydrogen Acceptor	-41.5963	23.2133	46.3095	9.1333
Hydrogen Acceptor	-20.4093	16.358	55.6273	11.5058
Hydrogen Acceptor	-12.8375	28.9957	64.8636	12.7014
Hydrophobic	-40.0793	24.85	46.7966	7.7066
Hydrophobic	-27.6896	5.9601	66.6768	9.9262
Hydrophobic	-24.5747	36.9257	65.9457	8.211
Hydrophobic	-20.9697	17.4683	54.4411	9.3026
Hydrophobic	-7.5645	29.226	65.6474	7.8231

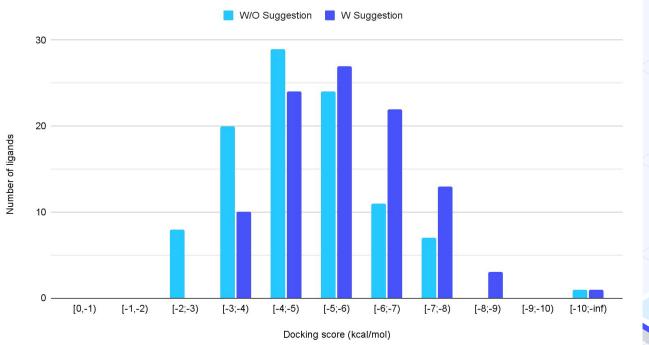
APPLICATION USECASES

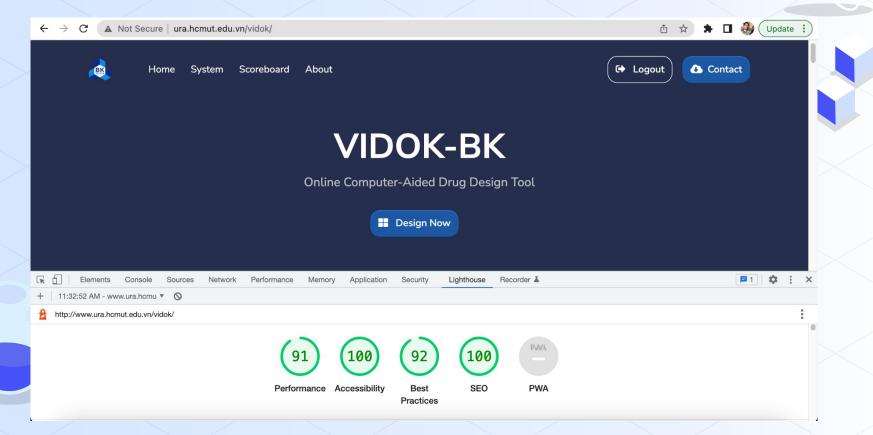
DATABASE DESIGN


TABLET AND MOBILE APPLICATIONS

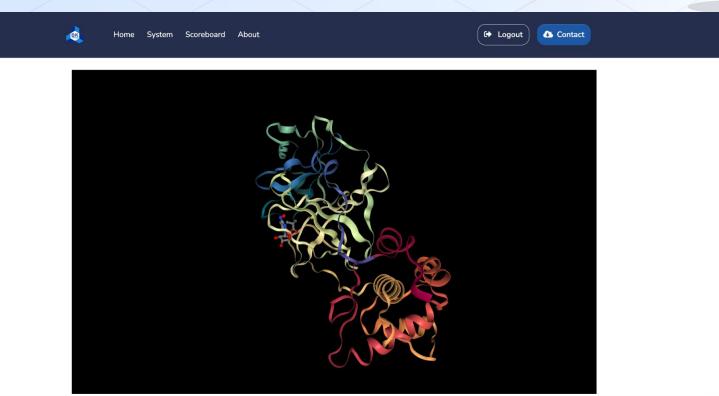
2000

• Multiple OSs


• Multiple browsers



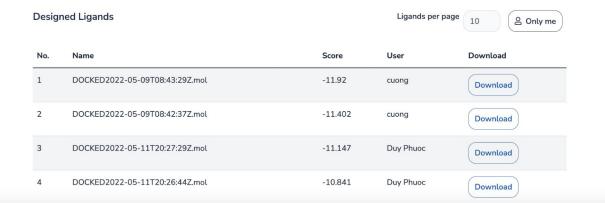
HISTOGRAM OF DOCKING SCORES


Histogram of docking score of designed ligand with and without suggestion

THE PERFORMANCE OF DESIGNED SYSTEM

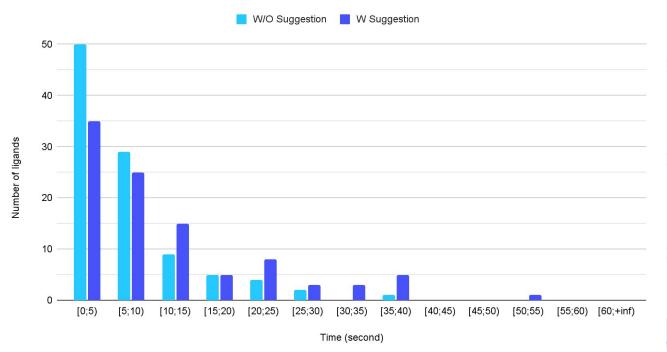
🢩 н	ome System Scoreboard About	C+ Logout Cont	ct
	Computer-Aid Design Sy From BK with Love	vstem	
		19 Submit	
	Include some updating calculations here	ChemDoodie Coyngit 6 2002-2022 McCorpan, Al Sight Sciencet	

	Home System	Scoreboard About		C Logout Contact	
Suggest	ions			×	
Reset					
No.	Туре	Atom index(es)	New Atom(s)	Apply	
0	add	0	0=C0	Apply	
1	add	0	C=0	Apply	
2	add	0	NC=0	Apply	
3	add	15	O=CO	Apply	
4	add	15	C=0	Apply	
5	add	15	NC=0	Apply	
6	add	15	0	Apply	
7	add	15	Ν		


Home System Scoreboard About

Scoreboard

🕩 Logout


Contact

View top deisgned ligands

HISTOGRAM OF PROCESSING TIME

Histogram of processing time for scoring designed ligands with and without suggestion

