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Abstract

In the context of the Coronavirus (COVID-19) pandemic that is resurgent globally

with dangerous Delta, and Omicron variants, the number of cases and deaths is

increasing at a dizzying rate. As a consequence, doctors and nurses are having to work

day and night against the effects of this pandemic. To lower the mortality rate and

lower pressure on the medical staff, the most anticipated thing right now is vaccines

and drugs. The story of vaccine development is probably not a new one, and we can

rely on previous techniques to synthesize and prepare vaccines. Thus, many vaccines

have produced with high protection ability such as Pfizer, AstraZeneca, Sputnik V,

etc. However, it is a completely different story for drugs, because the structural

differences of different virus strains make it difficult to find viral inhibitory proteins.

This is basically based on the interactions between the atoms of virus main proteins

and the atoms present in the drug. The obstacle here is there are only one or a few

drugs that can inhibit. This will lead to scientists having to try and fail many times

to find the right formula for making drugs. This process somehow can take up to 10

years with billions of USD required. In the race against virus variant proliferation,

drug development needs to be sped up. Therefore, an Artificial Intelligence (AI)

system with knowledge gained from prior trial and error attempts can be used to

predict necessary atoms and their structure in the drug to achieve better modulation

results. In this thesis, we create an AI-powered decision support system for assisting

drug designing process. With our system, the average binding affinity of designed

drugs has been improved by −0, 762 kcal/mol. As a result, this system also helps

increase the speed of researchers, shortening the time of in vitro screening to quickly

get drugs to patients who are waiting for them day by day, hour by hour.
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Chapter 1

Introduction

1.1 Problem Statement

The Coronavirus (COVID-19) is currently at a rapid development speed. Many of

its variants have been considered dangerous by World Health Organization (WHO)

such as Beta, Delta, and recently Omicron. In contrast with the virus transformation

speed, the race for developing drugs is in a sustainable situation. Unlike the pro-

cess of vaccine development, experts can follow many previous techniques to make

a candidate vaccine, in drug development, a candidate drug is considered not only

pharmacologically active with the receptor the virus attaches to but also safe for hu-

mans [2]. Among all the drugs humans can make, the number of drugs that satisfy

all conditions can be counted on the head of fingers [3]. Therefore, an intelligent

assistant is an idea to speed up the process of drug design.

The ViDok system [4] is an open, community-based drug-designing system devel-

oped by a research group of the University of Utah. This system contains a mobile

application for end users to design candidate drugs and a backend for processing de-

signed drugs from users. Using the mobile application, anyone can create his own

drugs and submit them to the ViDok system. The ViDok system, then, perform

docking and binding affinity calculation to rank the drugs user submitted. The ob-

stacle in designing drugs is that not many users have enough chemical knowledge to

make good drugs (drugs that have high ranking). To take advantage of community

power, we need an intelligent assistant that can give suggestions to the users with

1



CHAPTER 1. INTRODUCTION 2

less chemical knowledge to help them make better drugs. Figure 1.1 below illustrates

the current situation of drug design on the ViDok system.

Figure 1.1: The current situation of ViDok system

1.2 Goals

This thesis is about building a decision support system for the ViDok system to help

users create better drugs. Our system will take input of user-designed drugs, then

analyze their interactions with the target receptor and give back users drug-designing
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suggestions to make their designed drugs better. Multiple Artificial Intelligence tech-

niques are expected to be used in our system to make predictions of necessary infor-

mation for creating drug-building recommendations.

1.3 Scope

In this thesis, we will design and build an efficient high accurate drug-building decision

support system. Besides that, we also study and implement Artificial Intelligence

techniques and other algorithms required for our system. The final result will be a

running decision support system ready for being integrated into the ViDok system.

1.4 Thesis Structure

There are totally five chapters in this thesis. The first chapter is a brief view of

the problem we are solving and our vision. The second chapter makes clearer about

chemical knowledge used in this thesis and gives insights on some related Artificial

Intelligence techniques. Then the related works about drug design and computer-

aided drug design system are presented in Chapter 3. The next chapter is the soul of

this thesis. In that chapter, we describe our methods to create a drug design sugges-

tions step by step with high detail and our web-based system. Chapter Experiments

presents our validation results of de The final chapter is a brief summarization of this

thesis and discussions on future developments of the designed system.



Chapter 2

Theoretical Background

2.1 Pharmaceutical Knowledge

This section provides detail of necessary chemical knowledge used in this thesis. It

consists of some basic definitions, basic concepts of designing drugs and atoms inter-

actions.

Firstly, the definition of virus, target, ligand and drug are in following together

with a theorem about the interaction between target and drug (Definition 1, 2, 3, 4

and Theorem 1).

Definition 1 Virus is the causative agents of infectious diseases. It works by en-

tering the organism’s cell and reproducing.

Definition 2 Target is one of the virus’s main specific proteins, which are medi-

tation for the assembly of replication-transcription machinery, in order to form new

kernels for child viruses. To stop the virus activity, it is ideal to attack the target.

Definition 3 Ligand is a set of atoms that are linked together in some way and can

cause some effects on specific proteins. Ligand is sometime called compound.

Definition 4 Drug is a medicine that can cause some chemical effects on the target.

Drug is formed by a main ligand with appropriate adjuvants.

Theorem 1 A target can only be pharmacologically active with one or a few specific

ligands.

4
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When a ligand interacts with the target protein, it creates almost interactions in

the cavity of the protein (Definition 5). This assumption has been proved by Johnson

and Karanicolas [5]. The set of atoms in the protein that usually occurs interaction is

called binding site (Definition 6). Due to the specified properties of the protein cavity,

we then can infer that there are a very small number of ligands that have affects on

the target virus’s replication process (Theorem 1). Among all those drugs, there are

only a few drugs that have enough ”strength” to stop the virus from reproducing.

Based on that, a drug design process is defined in Definition 7. Figure 2.1 shows an

example of ”strong” and ”weak” ligand. In case of ”strong” ligand, it can make the

target protein inactivated, thus, the virus will stop reproducing.

Definition 5 Cavity, which is also known as pocket, is a set of atoms in an area of

a protein. These atoms are considered characteristic for that protein, which means

there are usually interactions that occur to these atoms.

Definition 6 Binding site is a group of atoms or residues of a protein that usually

occurs interaction with drugs or other proteins. The binding site lies in the cavity of

protein.

Definition 7 Drug design is a process of building ligand atom-by-atom. This pro-

cess is also consider as de novo drug design. The drug-builders are expected to add

or remove atoms or edges between atoms to create ligands that can be used to form a

complete drug. The ”stronger” the ligand, the better.

Generally, the process of drug design can be splitted into three sub-processes as

belows. Figure 2.2 illustrates the overall process of drug design.

1. in silico screening: The designed ligands will be verified to remove know-inactive

ligands. Then the remainings will be optimized and verified compulsory prop-

erties (e.g. ADMET).

2. in vitro screening: The passed in silico ligands will be synthesized and put

together with the target to confirm their effectiveness.
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Figure 2.1: An example illustrating the concept of ”strong” and ”weak” ligand

Figure 2.2: Overall process of drug design

3. in vivo screening: The confirmed effective ligands will be used to create drugs.

These drugs will experiment on live things (e.g. white mice, monkeys, human

volunteers) before going to the market.

Based on Theorem 1, we can observe that pharmacologists should try a huge

amount of ligands to discover the final drug for a specific virus. Due to that, this

process is very time-consuming and costly. To resolve this problem, we should take

action pro-actively in in silico screening process. There are two options to do in in

silico screening which can help speed up the whole drug designing process. The first is

using tools to predict the weak-interaction (known inactive) ligands and remove them.

The most common tools in this option is docking tools which is defined in Definition

8. The second approach is to make the designed ligands better. A definition of a

better ligand can be found at Definition 10.
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Definition 8 Docking is a process of simulating the drug and target in 3D space

and their interactions. This process will put the drug close to a part of the target

where interactions will likely occur. The error in simulation of available docking tools

is still high for unseen drugs.

As mentioned in the Introduction chapter, the goal of this thesis is creating a

decision support system for the drug-designing ViDok system. Our system follow

the mentioned second approach give drug-designing suggestions for the users to help

them create better drugs. Here, a drug-designing suggestion is defined in Definition

9 to clarify what thing our system gives to the users.

Definition 9 A drug-designing suggestion is an option of adding or replacing

an atom or a group of atoms in the designed drug.

Definition 10 A better drug is considered a drug with high probability of being

real-life-usable. In the scope of ViDok system, we can simplify this definition to a

drug with high ranking (docking score).

The concept of implementing our system is mining the interactions between cur-

rent drugs available on the ViDok system to learn the designing knowledge from the

community then using the learned knowledge to make suggestions. This concept is

mainly based on Theorem 2.

Theorem 2 All interactions between a drug and the target receptor are based on

chemical constraints and rules. These constraints and rules are generalized to all

pairs of drug - target protein.
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2.2 Decision Support System in Pharmaceutical

Formulation

Decision support systems (DSS) are usually computer information processing tools

that support decision-making activities in the field of particular interest [6]. They are

expected to act like an expert with deep knowledge about current problem and ability

to give some useful recommendations. The common tasks of a DSS are gathering and

analyzing data, synthesizing it to produce comprehensive information reports. These

tasks make DSS different from an ordinary operation application [6].

Many years ago, humans only expect the DSS to produce better and better sug-

gestions. In recent years, not only the good suggestions but also explanations for

suggestions are made important. Therefore, nowadays, all DSS consists of three basic

elements listed in the following.

• Knowledge base

• Inference machine

• User interface

A knowledge base consists of all available information that is represented in some

convenient ways for future queries. The tasks of collecting and preprocessing knowl-

edge can be very complicated but are crucial for the final system accuracy. In pharma-

ceutical technology, there are a lot of strong and complex physicochemical constraints

and rules, which enables describing the pharmaceutical formulations in terms of their

properties better [6]. However, in the other view, those constraints and rules could

sometimes not be defined clearly, which makes many obstacles for humans to classi-

cally analyze them.

Due to the above reasons, the inference machine is usually a combination of Ar-

tificial Intelligence (AI) models with knowledge-driven algorithms in order to give

meaningful explanations accompany by suggestions [7]. The user interface is a final

part of DSS to be prepared and depending on the particular problem, this part will

have different implementations.

An overview of working flows of a typical DSS is presented in Figure 2.3. Firstly,

the dataset will be constructed from experiments. Then, knowledge from it will be
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extracted by the inference machine. Finally, when being used to predict, its results

will be shown on the user interface.

Figure 2.3: The overview of a typical decision support system
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2.3 Target Cavity Model for Drug-designing Sug-

gestion

Basically, to create suggestions for building ligand pharmacologically active to a target

protein, we base on the properties and attributes of the target protein. According to

the Definition 5 of protein cavity, we can consider that protein cavity can be used

as the knowledge for drug design decision support system. Therefore, it should be

modeled into a representation that contains important features. That representation

is called the cavity model, which is defined in Definition 11.

Definition 11 Cavity model is a method that represents all properties of the cavity

of a protein. Based on the requirements of the specific tasks, the cavity model can be

in many different kinds.

There are many kinds a cavity model can be such as pharmacophore [1], structural

interaction fingerprint (SIFt) [8], etc. Among those kinds, the pharmacophore model

seems the easiest and most efficient one. The pharmacophore model groups binding

atoms into spheres and stores those spheres together with their chemical features.

The center of a sphere is the mean point of all atoms creating that sphere while the

radius varies as long as larger than the furthest atom belonging to that sphere [1]. An

example of pharmacophore model including different sphere types is shown in Figure

2.4.



CHAPTER 2. THEORETICAL BACKGROUND 11

Figure 2.4: An example of pharmacophore model containing different features of a
protein [1]
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2.4 Drug-Target Interaction Problem

The Drug-Target Interaction (DTI) problem is a common problem in drug discovery

and is solved by many methods from traditional to modern [9]. This problem takes

a ligand and a target protein as its inputs and uses an algorithm to predict which

atoms of the ligand can interact with which atoms of the target protein. A ligand,

when being put together with a protein in an appropriate environment, can create

many pairwise interactions to that protein. A pairwise interaction can belong to one

of three major common types which are Hydrogen, Hydrophobic, Van Der Waals [10].

Each type has different characteristics and its own strengths. Figure 2.5 gives an

example of different pairwise interactions created when a ligand interacts with the

target protein.

Figure 2.5: An example of Hydrogen and Hydrophobic interactions between a ligand
and the target protein

To exactly identify all interactions between a ligand and a protein is an impossible

task. The reasons behind this limitation are the variety of ligand 3D structures and

the environment where ligand interact with protein and the complex interaction rules.

Therefore, currently available methods utilize common chemical rules or combine

chemical rules with an AI-based model to provide the prediction of interactions at an

acceptable error rate. Further reviews on methods solving this problem can be found

in the chapter Related Works below.
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2.5 Molecular Representation

A molecule e.g. a ligand or a protein can be presented in many forms. Some common

forms are SMILES string, FASTA string, SMARTS string, feature matrix, image,

graph, etc. [11, 12]. Depending on the specific problem and the desire of the authors,

proteins and ligands could be in the same or different forms. Using string (SMILE,

SMART, FASTA or etc.) as a representation for a ligand or protein is the easiest

and best convenient way. But this representation lacks structural information and

specific chemical features. This limitation prevents the model to learn robust hidden

features so that new tactics to calculate molecular features of protein and ligand (e.g.

molecular fingerprint, chemical properties, etc.) have been developed. Some tactics

directly calculate features for the whole molecule while others split the molecule into

small fragments based on structures or coordinates, calculate features for each frag-

ment then combine them into a matrix [11, 12]. These tactics are good for problems

in the virtual screening process that require an overall perspective of a molecule such

as toxic prediction or DTI prediction [13]. However, presenting molecules by feature

matrixes still can not reflect the true intra-molecular connection (bonding) e.g. the

bonding between two atoms. Due to that reason, many recent studies start using

graphs as a salvation way to better embed the bonding information. A graph is de-

fined by a set of nodes and edges. When applied to a molecule, it is a set of atoms

and bonds. Presented molecules in form of graphs commonly mean that each atom is

embedded by a vector and all bonds are embedded by an adjacency matrix [14]. Fig-

ure 2.6 gives some examples of common molecular representations including Kekulé

diagram (image), SMILES string, fingerprint vector and graph.
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Figure 2.6: Some examples of common molecular representations
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2.6 Graph Attention Network

A graph can be defined by (V , E), where V is a set of nodes and E is a set of edges.

The representation of a graph can be an adjacency matrix, adjacency list or incidence

matrix. If the graph nodes have attributes, they will be represented by vectors. The

Graph Neural Network (GNN), which was born in 2009 [15], has been explored and

developed in various different domains and has proved its noticeable performance in

many applications. Many variants of GNNs are formed to adapt to specific domains.

A conceptual view of a GNN layer is illustrated in Figure 2.7.

Figure 2.7: Conceptualization of a GNN layer

In general, the GNNs contain two main stages: refining node feature vectors and

aggregating all node feature vectors to create the graph feature vector. In the first

stage, the feature vector of each node is updated over several times of message passing
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between neighboring nodes. The purpose of this stage is to obtain a higher level of

feature representation. Then, the refined node feature vectors are aggregated by a

function to form the graph feature vector. The aggregating function is required to be

invariant over permutations of node ordering. After that, the graph feature will be

fed to other layers based on the downstream tasks.

In this thesis, we utilize the power of Graph Attention Networks (GAT) [16], which

is the most well-known and widely-used variant of GNNs. Assuming we have a graph

G = (V,E) and each node has a fixed number of features F , the input for GAT

contains an adjacency matrix A and a list of node feature vectors X defined as (2.1)

and (2.2).

Aij =

 1 if i and j are connected by an edge

0 otherwise
(2.1)

X = {x1, x2, . . . , x|V |} with xi ∈ RF (2.2)

Firstly, the GAT performs linear projection to put the node feature vectors into

F ′-dimensioned embedding space by (2.3). In (2.3), W h ∈ RF ′×F is a learnable

weight matrix, and xh
i is the projected i-th node feature vector.

xh
i = W hxi, i = 1, |V | (2.3)

Then the GAT calculates the attention coefficients eij for all pairs of (i, j) nodes.

These coefficients are then normalized by the softmax function to decrease the bias

and the cost of computing. When normalizing for eij, only nodes which are connected

to i-th node are considered. Finally, the higher representation of each node is pro-

duced by weighted sum of its neighbor nodes using attention coefficients. Equation

(2.4a), (2.4b) and (2.4c) are formal definitions of above operations.
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

eij = (xh
i )

TW ax
h
j + (xh

j )
TW ax

h
i , i, j = 1, |V | (2.4a)

aij =
exp(eij)∑

k∈Ci
exp(eik)

Aij, i, j = 1, |V | (2.4b)

x′
i =

∑
j∈Ci

aijx
h
j , i = 1, |V | (2.4c)

In (2.4a), eij is the attention coefficient reflecting the importance of j-th atom

to i-th atom and W a ∈ RF ′×F ′
is a learnable weight matrix. In (2.4b), aij is the

normalized attention coefficient corresponding to eij and Ci is the set of neighbor

nodes of i-th node. In (2.4c), x′
i is the higher representation of i-th node feature

vector. Then the list X ′ = {x′
i ∈ RF ′|i = 1, |V |} is the output of the GAT layer.

Finally, after going through multiple GAT layers, all the refined node feature

vectors in the output node feature matrix X ′ will be aggregated together to form the

final representation vector for the whole graph. The aggregating function usually is

sum, average, max or min function.
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2.7 Transfer Learning Strategy

When dealing with small datasets, AI in general and Deep Learning (DL), in partic-

ular, might not learn effectively, so that many techniques were born to help overcome

this case and the most common one is data augmentation [17]. But in some specific

cases, the obtained dataset is not large enough for augmentation to work well (e.g.

the drug data for COVID-19 disease) or is constrained by tight rules. Thus, we could

not perform augmentation on those data but instead, collect more data or use other

strategies. In this situation, the idea of using transfer learning becomes more ap-

propriate because it saves time and costs of collecting more data. The definition of

transfer learning is written in [18] as follows ”Transfer learning and domain adapta-

tion refer to the situation where what has been learned in one setting is exploited to

improve generalization in another setting.”. Based on the concept of transfer learn-

ing, to solve the problem of small datasets without collecting more data, we can use

another large-but-related dataset to pretrain the model and then finetune the pre-

trained weights on the target dataset. This process will help the model generalize

the learned patterns better, thus, boosting the model performance on the target task.

Figure 2.8 visualizes the described pipeline to deal with small datasets using transfer

learning.

Figure 2.8: An overview of transfer learning strategy
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2.8 Nearest Neighbors

Nearest Neighbors (NN) [19] is a well-known machine learning algorithm for solving

many practical problems from easy to complex. The principle behind NN methods is

to find a predefined number of available points closest in distance to or in a distance

range of the new point. The distance can, in general, be any metric measure and

standard Euclidean distance is the most common choice. An example of using this

NN method is illustrated in Figure 2.9.

Figure 2.9: An example of using Nearest Neighbors algorithm. The available points
are colored as red while the new point is colored as green and the cut-off distance
equals 2.

In original NN method, the computing complexity is high because the NN algo-

rithm need to calculate all distances to all available points when a new point being

added [20]. To reduce this limitation, all available points are used to form a BallTree

[21] or a KDTree [22]. The most common way is using KDTree. In KDTree, all

points will be split into branches and leaves. An example of building a KDTree with
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different stop conditions is shown in Figure 2.10. The process of building KDTree

contains steps as following.

1. Random choose a feature

2. Find the median point of the chosen feature across all data points

3. Split all data points in current node into two branches using the median point

4. Repeat above steps until stop conditions are met. Stop condition can be the

deep of the tree or the maximum number of points at leaf nodes.

Despite its simplicity, nearest neighbors has been successful in a large number

of classification and regression problems, including handwritten digits and satellite

image scenes. Being a non-parametric method, it is often successful in classification

situations where the decision boundary is very irregular.
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(a) A KDTree with leaf size 1

(b) A KDTree with leaf size 2

Figure 2.10: An example of building KDTree from a dataset with different stop
conditions
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2.9 DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a cluster-

ing algorithm which is first proposed by Martin Ester et al. in 1996 [23]. It is the

most well-known clustering algorithm basing on density. Conceptually, this algorithm

groups regions satisfying a density threshold minPts within a distance of ϵ together.

In an abstraction way, DBSCAN can be described in five steps as followings.

1. Randomly chose a core point satisfying the condition of density in ϵ radius

crowder than minPts.

2. Expand the area of the selected core point by repeating to select other core

points in the ϵ radius of that area until no further core point can be selected.

3. Assign all points selected to a cluster.

4. Repeat the above three steps until there is no remaining core point.

5. Assign non-selected points to noises.

An example of running DBSCAN on minPts = 3 with defined ϵ is illustrated in

Figure 2.11.

Figure 2.11: An example of DBSCAN clustering two regions
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Related Works

3.1 De novo drug design

De novo drug design refers to the design of novel ligands that satisfy a set of chemical

constraints and rules using a computational algorithm [24]. The phase ”de novo”

indicates that the ligands are designed from scratch without any starting templates

[25]. The process of designing drugs is based only on the information regarding a

target protein or its known binding site. Designed drugs are expected to possess

good binding or inhibitory activity against the target protein [26, 27, 28]. There are

two major approaches available including structure-based and ligand-based design

(Figure 3.1) [29]. Both approaches can be implemented at atom level or fragment

(a group of atoms) level based on the specific target protein and the choice of the

research group.

Toward the structure-based de novo drug design, it starts by defining the active

binding site of the protein. Then, based on the binding site descriptions, experts can

make appropriate decisions. Non-covalent interactions between ligandd and protein

are mainly in three types, which are Hydrogen, Hydrophobic and Van Der Waals.

Since the shape and physicochemical properties of the binding site are crucial for

designing a good drug, they should be deeply explored. There are several methods

used to identify the interaction site of the protein. Some rule-based methods that

can be mentioned are HSITE [30], LUDI and PRO LIGAND [31, 32], HIPPO [33],

23
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Figure 3.1: A schematic graph representing current de novo drug design approaches

etc. These approaches have the same weakness of lacking the ability to detect com-

plex interactions. Therefore, recent researches prefer using knowledge-driven Machine

Learning or Deep Learning methods (see [34, 35, 14, 36, 37]. Each method of these

has its own advantages and disadvantages so that we should deeply analyze each one

before making the decision to use which. After a drug is designed or a drug suggestion

is made, it should be evaluated, and this is one of the most important steps in drug

design. To evaluate drug candidates, the common way is using a scoring function.

There are many types of scoring functions including force fields, empirical scoring

functions, and knowledge-based scoring functions, etc. (see [38, 39, 40]).

The other ligand-based approach is only used when the 3D structure presentation

of the target protein is unknown. This method uses the active binders from a big

dataset to create a ligand pharmacophore model. After that, that ligand pharma-

cophore model is utilized to create a pseudo-protein then perform similarity search

with target protein or directly make drug candidate. The main weakness of ligand-

based approaches is limited predictive power when there are insufficient bioactivity

data for the ligands towards the target protein. Some research about ligand-based
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drug design methods can be listed as DOGS [41], QSAR [42], hybrid QSAR [43],

CSP-SAR [44], generative models using Deep Learning [45, 46], etc.

The crowd-sourcing ViDok drug design system follows the concept of the structure-

based approach at the atom level in drug design, which makes the process to create

a decision support system easier.
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3.2 Computer-Aided Drug Design Systems

Computer-aided drug design (CADD) systems have been appeared more than one

decade and no one can deny its influence to the development of several therapeu-

tically crucial ligands [47]. Thanks to those systems, many designed ligands have

been successfully developed into commercially available drugs. In the scope of this

thesis, we only consider systems used in the in silico screening process. Some cur-

rent highlighted CADD systems used for COVID-19 crowdsourcing drug design are

COVID Moonshot [48] and ViDok [4]. The screenshots of these two systems are given

in Figure 3.2 and Figure 3.3, respectively. A common CADD system often includes

modules such as docking, ligand building suggestions, interactions identification and

visualization [47]. In the past, most modules of the CADD system are based on

quantum computation and known chemical rules. Recent-year research has demon-

strated the power of modern algorithms, especially AI-based ones to overcome the

limitations of the past. Some highlight tools widely used in CADD systems can be

mentioned such as BIOVIA Discovery Studio [49] for multiple purposes, AutoDock

Vina [50] for docking, PyMOL [51] for post-docking analysis, Schrödinger Maestro

[52] for molecular modeling, etc.

Toward our decision support system, we expect it to be a part of a big CADD

system like ViDok system. Therefore, to develope it, on one hand, we are about

to apply state-of-the-art Deep Learning methods for building “strong” knowledge to

ensure that provided suggestions are good enough that the designed ligands have a

higher probability to go to laboratory experiments and become one of the effective

drugs used in real life. On the other hand, we try to maintain chemical constraints

and rules as much as possible to decrease the false-positive candidates and shorten

the time of screening processes.
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Figure 3.2: The screenshot of the COVID Moonshot system
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Figure 3.3: The screenshots of the Vidok system



CHAPTER 3. RELATED WORKS 29

3.3 Docking Tools

Docking tools are the most commonly used in the in silico screening process. These

tools take input of 3D structures of the target protein and design ligand, perform

quantum chemical computations and provide the prediction of protein-ligand interac-

tion poses. There are various docking tools such as AutoDock 4 [53], AutoDock Vina

[50], GLIDE [54], GOLD [55], LiganScout [56], Molecular Operating Environment

(MOE) [57], etc. Among these tools, AutoDock Vina is the one that is most widely

used [47, 58]. Despite having been developed for many years, the performance of

docking tools in general and AutoDock Vina in particular remains sustainable. The

highest performance docking tool is GOLD, which has about 60% of docked ligands

having Root Mean Square Deviation (RMSD) of atomic positions compared to exper-

iments lower than 2Å [58]. That of the AutoDock Vina is only about 50% [58], which

means we can not use these docking tools to analyze or select the effective drugs

against any diseases instead removing known weak ligands (ligands locate very far

from the common interaction areas of protein). Figure 3.4 visualizes an example of

the docking process. Initially, we already have the target protein. After users finish

designing a ligand, a docking tool will be called to predict the pose of the ligand when

interacting with the protein. These results were visualized using PyMOL.

Figure 3.4: An example of docking process



CHAPTER 3. RELATED WORKS 30

3.4 Drug-Target Interaction Prediction

Drug-Target Interaction (DTI) prediction is a typical problem in structure-based

drug design. A method of solving this problem is expected to take the input of the

designed ligand and target protein and analyze pairwise interactions between them.

Traditional methods use docked ligand as input and try to check physicochemical rules

to consider interactions. But, as discussed in the section Pharmaceutical Knowledge,

the chemical rules vary in different environments, thus, it is very hard to define exact

rules. As a consequence, the performance of these traditional methods is not high

[59].

Recent years show the vast developments of the AI Era in many distinct industries

such as health, telecommunication, service industry, etc. Especially in the COVID-19

situation, many AI techniques from Machine Learning (ML) to Deep Learning (DL)

such as Support Vector Machine (SVM), Ensemble Learning, Convolutional Neural

Networks (CNNs), Transformer, Graph Neural Networks (GNNs), etc. were applied

to help speed up the process of making vaccines and drugs [60] and it makes no

exception for the Drug-Target Interaction prediction problem [12]. Currently, AI-

based methods can predict pairs of atoms which have high interaction probability

then verify the predicted pairs with chemical rules. With this hybrid approach, many

hard identifying interaction could be discovered, which makes benefits for the next

phase of drug design [59].

At the conceptualization level, almost recent DTI models initially use one suitable

AI technique to encode the ligand and protein into feature vectors based on their

representations. Then, these models aggregate the two feature vectors together to feed

into a classifier to predict if the ligand is pharmacologically active with the protein or

not [14, 36, 61, 62, 63]. Some models also utilize the attention mechanism to enhance

the performance when creating feature vectors [14, 36, 61] and use attention score to

predict high interaction probability atoms.

Another approach for this DTI problem is based on the “guilt-by-association”

principle [64, 13]. Methods belonging to this approach try to find similar proteins

and ligands in the known-interaction datasets and then use them as evidence to

predict the input ligand-protein [64, 9]. This approach has the main weakness when
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dealing with strange proteins or ligands. In this case, there is not much ”evidence”

for guiding the model, so its performance could not be stable [9].

Comparing the above approaches, we can consider that with the unseen protein

of Coronavirus, the second approach using similarities will not work as well as the

first one with a proper training strategy. Therefore, we are going to follow the first

approach (encoding the ligand and target protein then using the produced feature

vector to predict interactions).



Chapter 4

The Proposed Solutions

4.1 Overview

Towards our system, we are going to build it for assisting drug design process. Fol-

lowing the typical decision support system, we adapt its working flow for our system

by specifying the input experiments, knowledge and preparation process. Figure 4.2

presents our adapted working flow. In our system, the core knowledge required for

creating suggestions is the cavity model of the target protein, so the preparation pro-

cess will also be changed to two sub-processes with the goal of building this cavity

model. Those two sub-processes will solve two necessary problems: i) Extracting

interactions between the design ligands and the target protein and ii) Building cavity

model for the target protein by mining important interactions. Moreover, as men-

tioned before, our system will incorporate with the ViDok system. Therefore, our

input experiments will mainly collected from the ViDok system.

To emphasize the cooperation between our system with the ViDok system, we

visualize their relationship in Figure 4.2. In our system, we consider the one and only

target Mpro protein [65] of Coronavirus as the ViDok system. It is the main protein

featured for COVID-19 replication. In general, our system will use the drug data both

from the ViDok system and other laboratory experiments to prepare knowledge data.

Then, when newly designed ligands come to request supports, our system will use

learned knowledge together with pre-defined chemical knowledge to make suggestions

and send them back to the ViDok system for visualizing.

32
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Figure 4.1: The overview of our system following the typical DSS

The target of the preparation process is the cavity model of the target protein.

The definitions of cavity and cavity model can be found at Definition 5 and 11. To

achieve that knowledge data, we need to mine all interactions that occur between all

input drugs and the target protein, which is also known as binding site (Definition

6). Therefore, in the preparation process, we need to solve the problems of two

components, which are “identifying drug-protein interactions” and “ building cavity

model for target protein”. The detail of these two components will be discussed in

the following sections.

After the preparation process is finished, our system will have enough knowledge

to make suggestions. The inference process will mainly contain two parts that are

“finding near atoms in protein cavity” and “performing recommending using learned

knowledge”. To simplify the process, we consider these two parts as “building algo-

rithm for recommending” and its detail is also presented in the next section. Finally,

we also make a demonstration website for our decision support system alongside with

the ViDok system. Below subsection ”Web application” describes the details of our

developed application.
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Figure 4.2: The overview of our system together with the ViDok system
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4.2 Detail of components

4.2.1 Identifying Drug-Protein Interactions

The main goal of this components is a method for identifying pairwise interactions

between a ligand and the target protein. Our proposed method is a combination of

a knowledge-driven algorithm and a Deep Learning model. Firstly, we get the lig-

and and target protein as input. Then, we use a GNN-based Deep Learning model

to extract the high interaction probability pairs by inferencing high attention score

elements (the detail will be discussed below). Using those extracted pairs, we use a

self-designed algorithm based on Nearest Neightbors to check physicochemical con-

straints. The pairs satisfied constraints are considered pairwise interactions. In the

scope of this thesis, we only consider two major interaction types, which are Hydrogen

and Hydrophobic. Figure 4.3 illustrates the overview pipeline of this components.

Figure 4.3: The overall pipeline of Identifying Drug-Protein Interactions component

The Graph Neural Network Model for Identifying

High Probability Interactions

At current time, there is no available dataset with fully annotated interactions. There-

fore, we perform training model on pharmacologically active predicting task. After

model trained, we infer the pairwise interactions by their associate attention scores.
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Among state-of-the-art GNN-based model for pharmacologically active predicting

task, perhaps the study presented by Lim et al. [14] is most remarkable as it does

not only apply GNNs but also embeds the 3D structure of the ligand and protein into

graph features. This work will then serve as the baseline in my thesis.

Moreover, in the fight against COVID-19, there are not many ligands that have

been put in in vitro screening. The largest crowd-sourcing drug discovery system

for COVID-19, PostEra COVID Moonshot [48], has experimented with only about

2000 ligands. In those experimented ligands, only 379 ligands have been captured

co-crystal data i.e. the 3D structure of ligands by Fragalysis [66]. As a consequence,

current drug-for-COVID datasets lack generalization for training AI models, making

them suffering from overfitting. We also address this issue by proposing a transfer

learning strategy in this thesis. Thus, our contributions are of three-fold as follows.

• Firstly, we apply transfer learning to pretrain the baseline model on a suitable

known-interaction variant dataset of the large and diverse dataset from Protein

Data Bank [67]. Data from Protein Data Bank is collected from real experi-

ments of pharmaceutical colleagues. Then we finetune the pretrained model for

predicting interaction on COVID-19 target protein using the dataset of Fragal-

ysis.

• Secondly, we add a mechanism to predict pairwise interactions by inferring

attention scores.

• Thirdly, and importantly, we introduce a new model, known as Atom-enhanced

Graph Neural Network with Multi-hop Gating Mechanism. This model is ex-

tended from a baseline model introduced in [14], in which we introduced three

major improvement strategies as follows: (i) Enriched atom encoding : we addi-

tionally encode atoms in the model with more important attributes; (ii) Total

atom aggregation: we enhance the baseline model to aggregate not only the

atoms of ligands but also of the proteins to produce more informative represen-

tation of the model output; and (iii) Multi-hop gating mechanism: we modify

the original gating mechanism to allow non-neighbor atoms affect others, earn-

ing improved interaction prediction.
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The baseline model

Our baseline model reuses the study of [14]. This is a novel GNN-based model

that can integrate the 3D structure into ligand and protein representations to predict

whether the ligand be pharmacologically active with the target protein or not. Figure

4.4 illustrates the overview of the model.

Model input representation

Firstly, the model takes the input of a ligand and a protein as a graph. According

to the original study, while all atoms in the ligand are taken into the graph, only

protein atoms in the radius of 8Å to any ligand atoms are considered. The graph is

presented by a matrix of atom features (X) and two adjacency matrix (A1, A2) and

equations (4.1), (4.2) and (4.3) shows the way to create these matrixes, respectively.

Figure 4.4 has visualized a conceptual view of matrix X, A1 and A2.

X = {x1, x2, . . . , xM} with xi ∈ RF (4.1)

A1
ij =

 1 if i and j are connected by covalent bond or i = j

0 otherwise
(4.2)

A2
ij =



A1
ij if i, j ∈ protein or i, j ∈ ligand

e−(dij−µ)2/σ if i ∈ protein and j ∈ ligand,

or if i ∈ ligand and j ∈ protein

0 otherwise

(4.3)

In (4.1), xi is a feature vector of an atom which contains F features shown in Table

(4.1) and M is the total atoms in the graph representing both ligand and protein.

In (4.2) and (4.3), i and j are the atom indexes with the same order as of X. A1
ij

and A2
ij are the elements at i-th row and j-th column in the A1 and A2 matrix,

corresponding. In (4.3), dij is the distance between i-th atom and j-th atom and µ

and σ are learnable parameters.

To adapt this model for our chosen datasets, we have modified the required input

by replacing the 8Å-radius atoms of protein with the protein pocket (protein cavity).
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Table 4.1: The list of atom features used in original study and in Improvement 1

Feature Value

Original
Atom type C,N,O,S,F,P,Cl,Br,B,H (onehot)
Degree of atom 0, 1, 2, 3, 4, 5, 6 (onehot)
Number of H atoms attached 0, 1, 2, 3, 4 (onehot)
Implicit valence electrons 0, 1, 2, 3, 4, 5 (onehot)
In aromatic 0 or 1

Added in Improvement 1
Hydrogen D/A [is donor, is acceptor]
Pos/Neg Ionizable [is pos, is neg]
In lumped hydrophobe 0 or 1

The protein pocket is proved to be the place where almost interactions occur [5].

That means if a ligand is considered active with a protein, it creates many strong

interactions with protein atoms in the protein cavity. Therefore, using the protein

cavity makes much more sense than the original method.

After all the inputs are prepared, they are then passed to model for predicting

ligand-protein interaction.

Model architecture

In this baseline model, Lim and his partners used the GAT layer as the main layer

for feature extraction. However, they modified the original GAT layer by adding a

gating mechanism at the end of the layer to control how much feature information is

passed through. In a formal form, equation (2.4c) of the original GAT is replaced by

(4.4). 
xtemp
i =

∑
j∈Ci

aijx
h
j , i = 1, |V |

zi = σ(W o(xi||xtemp
i ) + b), i = 1, |V |

x′
i = zixi + (1− zi)x

temp
i , i = 1, |V |

(4.4)

In (4.4), W o ∈ R1×2F ′
n is a learnable weight matrix and ’||’ is the concatenation

operator.

Let GAT () be the formal representation of all GAT layer formulations which are
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Figure 4.4: The architecture of the baseline model

(2.3), (2.4a), (2.4b) and (4.4). With the input of (X, A1, A2) created from the

complex of protein and ligand, we define a GAT block that takes these input and

produces the higher representation for X. Specifically, the GAT block separates the

input into (X, A1) and (X, A2), passes them to GAT layer to get output X ′
1 and

X ′
2 and perform subtraction X ′

2−X ′
1 for model to learn the difference between the

structure in a binding pose and the structure as separated. Equation (4.5) presents

insights of a GAT block.
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
X ′

1 = GAT (X,A1)

X ′
2 = GAT (X,A2)

X ′
out = X ′

2 −X ′
1

(4.5)

In (4.5), X ′
out is the output of GAT block. According to the original study,

authors stacked N GAT block to achieve better feature representations. This can

be done by using the output of the previous GAT block X ′
out with two adjacency

matrixes A1, A2 as the input for the next GAT block. Please notice that the number

of nodes in the GAT layer is equal to the total number of atoms of both protein and

ligand (|V | = M).

The output refined atom feature vectors of the last GAT block are aggregated in

the next step to form a feature vector xcomplex representing the complex of the input

protein and ligand. Equation (4.6) gives the formulation for creating this vector.

Finally, a classifier with multiple fully-connected layers is employed to decide if the

input complex is active or not. A fully-connected layer is a non-linear transformation

that is defined in (4.7). An overview of the baseline model is also showed in Figure

4.4.

xcomplex =
∑

i∈ligand
xi (4.6)

y = σ(W cx+ b) (4.7)

In (4.7), x, y is the input and output fully-connected layer corresponding. The

W c is a learnable weight matrix and b is the bias. Each fully-connected layer in

the classifier has its activation function σ as the ReLU function except the sigmoid

function for the final one.

Adaptation for Pairwise Interactions Prediction

As mentioned before, the origin baseline model is designed for the pharmacolog-

ically active predicting task. Therefore, we need to design an algorithm to evaluate

attention scores gotten from the trained model. Specifically, when inferring, we also
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input the ligand and protein as required. After that, we let the model perform cal-

culations until the last GAT Block. We then get the normalized attention matrix of

the GAT layer in the last GAT Block and filter out pairs with attention scores higher

than 0.5. Algorithm 1 describes our designed algorithm more formally and Figure 4.5

abstracts the way our algorithm is integrated into the baseline model.

Algorithm 1: Attention Inference

Input : GNN-based model with attention mechanismM,
Input for GNN-based model (X,A1,A2),
The total number of atoms M .

Output: List of high interaction probability pairs
P = {(i, j, s)|i ∈ ligand & j ∈ protein & s >= 0.5}

M(X,A1,A2)
lastGATBlock ← GetLastGATBlock(M)
A = {aij} ← GetNormalizedAttentionMatrix(lastGATBlock)
P ← ∅
for i in Range(0,M) do

for j in Range(i+ 1,M) do
if aij + aji ≥ 1 then

P ← P ∪ {(i, j, aij+aji
2

)}
end

end

end
return P

The Transfer Learning Strategy

As mentioned in the above sections, to deal with insufficient drug data of Coron-

avirus’s Mpro protein, we apply a transfer learning strategy for learning the general

pattern (general interaction rules) before exploring specific rules of Mpro protein.

Firstly, for each model with configured settings (e.g improvements), we perform pre-

training using the PDBbind dataset for the model to obtain the generalizability. After

that, we finetune the pretrained weights of the model using the Fragalysis dataset.

With this process, we expect the finetuned model learned both the common interac-

tion rules of any ligand-protein and the specific rules for Coronarivus protein (Mpro

protein). To demonstrate how transfer learning affects the model performance, we
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Figure 4.5: The architecture of our modified model

also train the scratch model with the Fragalysis dataset for comparison. Figure 4.6

shows the overview of the above flows including normal flow (model is directly trained
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on Fragalysis) and transfer learning flow (model is pretrained before being finetuned

on Fragalysis).

Figure 4.6: Illustration of the normal flow and transfer learning flow used in this
study

The Atom-enhanced GNN Model with Multi-hop Gating

Mechanism

In this study, we introduce an improved model from the baseline one, known as

Atom-enhanced GNN Model with Multi-hop Gating Mechanism1, in which the follow-

ing improvements are carried out.

Improvement 1: Enriched atom encoding The first improvement is enriching

atom encoding which adds more chemical features to the representation of each atom.

The newly added features include atom degree of six, whether an atom is a hydrogen

donor or hydrogen acceptor, whether an atom can be positive or negative ionizable,

whether an atom is in any lumped hydrophobe, which are the prerequisites of the

corresponding bonding type (a hydrogen bonding requires a hydrogen donor and a

hydrogen acceptor atom, so on). Table 4.1 summarizes all features that are used in

this improvement.

1Our implementation is available at https://github.com/ViDok-BK/GMGM
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Improvement 2: Total atom aggregation The second improvement basically

bases on an assumption that interactions are only created if the protein and the

ligand match some interaction rules [12]. Therefore, we have modified the original

aggregating layer which calculates the sum of all ligand atom vectors to a combination

of ligand and protein representation vector. With our modification, any protein atoms

that have a minimum distance to any ligand atoms less than 5.5Å will be taken into

consideration for interaction prediction. The mathematical formulations for our new

aggregating layer are proposed in (4.8a)-(4.8c).

xcomplex = (xligand||xprotein) (4.8a)

xligand =
∑

i∈ligand
xi (4.8b)xprotein =

∑
i∈P xi

P = {xp, p ∈ protein|∃c ∈ ligand : dist(p, c) < 5.5Å}
(4.8c)

In (4.8a), ’||’ is the concatenation operator and in (4.8c), dist(p, c) is the Euclidean

distance [68] between protein atom p and ligand atom c.

Improvement 3: Multi-hop gating mechanism The third improvement is

the multi-hop gating mechanism. In this improvement, we repeat the calculation of

the gating mechanism multiple times. The reason for this improvement is to enlarge

the receptive field of an atom, which is basically based on an assumption in chemistry

that atoms having the same function (e.g. hydrophilic, hydrophobic, etc.) usually

concentrate together and create a wide area of influence over non-neighbors. Figure

4.7 gives a more intuitive view of this mechanism of influence. This improvement

is inspired by the attention diffusion mechanism, which is proposed by [69]. The

process of repeating the gating mechanism calculation exactly matches the process of

approximate computation for attention diffusion except for the gating coefficient zi

which is computed from node feature vectors compared to manually input in Wang’s

study. Let K be the number of hops in the receptive field of an atom, the process of

calculating multi-hop gating mechanism is presented in Algorithm 2. Please notice

that in our proposed improvement, we follow Wang’s study to use xh
i for computing
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x
(k)
i , k = 1, K instead of xi as in original study of Lim.

Figure 4.7: The difference between models with and without multi-hop gating mech-
anism

Algorithm 2: Multi-hop gating mechanism

Input : Normalized attention coefficients aij, where i, j = 1, |V |,
Atom feature vectors xh

i , where i = 1, |V |,
Number of hops K.

Output: Refined atom feature vectors x
(K)
i , where i = 1, |V |

x
(0)
i = xh

i , i = 1, |V |
for k in Range(1 . . . K) do

xtemp
i =

∑
j∈Ci

aijx
(k−1)
j , i = 1, |V |

zi = σ(W o(x
(0)
i ||x

temp
i ) + b), i = 1, |V |

x
(k)
i = zix

(0)
i + (1− zi)x

temp
i , i = 1, |V |

end

return X(K) = {x(K)
i |i = 1, |V |}
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Nearest Neighbors based Algorithm for Verifying

Interactions

Having gotten high interaction pairs from previous GNN-based model, we them apply

our design algorithm using Nearest Neighbors together with physicochemical rules to

verify whether they are actual interactions or not. The chemical rules we used are

very basic and satisfied in almost cases. They are presented for two major interaction

types as followings.

• Hydrogen

– A pair of Hydrogen Donor and Hydrogen Acceptor (in case ligand atom is

Hydrogen Donor, protein atom must be Hydrogen Acceptor and vice versa)

– Maximum distance between ligand atom and protein atom is 5.5Å

• Hydrophobic

– A pair of Carbon atom and Aromatic ring or a pair of Hydrophobic group

and Aromatic ring

– At least a pair of one ligand atom and protein atom has distance smaller

than 5.5Å

The above rules require feature calculation for each atom or group of atoms (Hy-

drogen or Hydrophobic). These features can be easy calculated by checking chemical

constraints. To ensure the calculation for those features efficient and correct, we use

an external library called RDKit [70]. This library is very popular and wide-used by

various quantum chemical related projects.

Using the above rules, we develop our algorithm integrating Nearest Neighbors and

the results from GNN-based model to get the final pairwise interactions as needed.

Our algorithm is presented in Algorithm 3. Figure 4.8 presents a running example

using our proposed algorithm.
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Algorithm 3: Nearest Neighbors combined with chemical rules

Input : High interaction probability pairs
P = {(i, j, s)|i ∈ ligand & j ∈ protein & s >= 0.5},
ligand, protein,
Distance threshold ϵd,
Chemical rules R.

Output: Interaction list
I = {(i, j, xi, xj)|i ∈ ligand & j ∈ protein & x is feature vector}

I ← ∅
N ← InitNearestNeighbor(protein→ atoms)
for l atom in ligand do

listNearAtoms← GetNearAtoms(N , ϵd, l atom)
for p atominlistNearAtoms do

interaction← checkInteractionType(R, l atom, p atom)
if interaction is Hydrogen then

xi, xj ← CalculateFeature(l atom, p atom)
I ← I ∪ {(l atom, p atom, xi, xj)}

end
if interaction is Hydrophobic then

hasHighProb← HasHighProb(P , l atom, p atom)
if not hasHighProb then

continue
end
xi, xj ← CalculateFeature(l atom, p atom)
I ← I ∪ {(l atom, p atom, xi, xj)}

end

end

end
return I
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Figure 4.8: An example using our proposed Nearest Neighbors based algorithm
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4.2.2 Building Cavity Model for Target Protein

This component aims to create a cavity model for the target protein to be used in the

recommending process. As discussed in Background chapter, the most common cavity

model is pharmacophore model which is represented by spheres. Each sphere clusters

same feature atoms in a near distance and set the interaction radius. According to

chemical knowledge, the more frequent a protein atom has interactions, the more

essential it is. Because of that assumption, we need to do an additional task to find

frequent interaction protein atoms with the expectation that those atoms will make

our suggestions better. With the interactions predicted from the previous component,

we put them in 3D space and apply the modified DBSCAN algorithm to cluster those

interactions to groups of protein atoms feature by feature. After that, we append a

distance of 5.5Å to the radius of each sphere as the interaction area. The output of

our algorithm is the representation for the protein cavity containing multiple featured

spheres. The overview flow is presented in Algorithm 4. An example result is shown

in Figure 4.9 to give the conceptual view of a pharmacophore model.

Figure 4.9: An example of pharmacophore model flattened in 2D space
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Algorithm 4: Building cavity model for target protein

Input : The cavity C of target protein,
Interaction list

I = {(i, j, xi, xj)|i ∈ ligand & j ∈ protein & x is feature vector},
Minimum number of point minPts,
Radius ϵ.

Output: Pharmacophore model P for the target protein
P ← ∅
pAtomsWithFeature← ExtractProteinAtom(I)
C ← 0
listCluster ← ∅
for p atom, xp in pAtomsWithFeature do

neighbors←
RangeQuerySameFeature(pAtomsWithFeature, p atom, ϵ, xp)
if |neighbors| < minPts then

continue
end
C ← C + 1
listCluster[C]← neighbors
for n atom in listCluster[C] do

if BelongAnyCluster(n atom) then
listCluster[C].remove(n atom)
continue

end
neighbors←
RangeQuerySameFeature(pAtomsWithFeature, n atom, ϵ, xp)
if |neighbors| ≥ minPts then

listCluster[C]← listCluster[C] ∪ neighbors
end

end

end
for cluster in listCluster do

mean point, radius, feature← CalculateSphereFeature(cluster)
radius← radius+ 5.5 // Add the interaction area
P ← P ∪ {(mean point, radius, feature)}

end
return P
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4.2.3 Building Algorithm for Recommending

Conceptually, this module does not try to deeply analyze the interactions but instead

quickly scans through the ligand and figure out modification needed atoms to propose

suggestions. In this module, we utilize the built pharmacophore model and basic

chemical rules as used in the first component of identifying interactions to screen the

designed ligand. The expected outputs of this component are suggestions of adding

or replacing an atom or a group of atoms.

To prepare for the input for this component, we take the pharmacophore built

in the previous component and the chemical rules in the first component. After all

the required knowledge is prepared, we now can confidently give suggestions to a

newly designed ligand. The overall process of creating suggestions can be grouped

into two main steps. The first step is finding all ligand atoms that belong to any

sphere in the pharmacophore model. The second step is creating suggestions corre-

sponding to every sphere in pharmacophore model if no ligand atom belongs to that

sphere or belonged atoms have unsuitable features. For example, if the sphere has

Hydrogen Donor feature, but the ligand atom belonged to that sphere does not have

Hydrogen Acceptor feature, so it is unsuitable. To query the suitable ligand atoms for

a sphere, we base on basic chemical rules to predefine suitable atoms for recommend-

ing. Our predefined suitable atoms by each rule are listed in Table 4.2. Algorithm 5

summarizes our proposed flow to create suggestions from learned knowledge.

Table 4.2: The list suitable atoms for recommending by each chemical rules

Protein feature Ligand feature Suitable ligand atom(s)

H-Acceptor H-Donor O or O=CO or N or NC=O
H-Donor H-Acceptor O=CO or NC=O or C=O
Hydrophobic or C Aromatic c1ccccc1 or Cc1ccccc1 or C=Cc1ccccc1
Aromatic Hydrophobic or C C
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Algorithm 5: Making suggestions for a new drug

Input : A newly designed ligand,
Pharmacophore model P of target protein,
Chemical rules R.

Output: Suggestions S
S ← ∅
for sphere in P do

l atoms← FindAtomInSphere(sphere, ligand)
if l atoms then

satisfied← V erifyChemicalRules(R, sphere, l atoms)
if not satisfied then

l atoms ids← GetReplaceAtomIndexes(l atoms)
replace atoms← QuerySuitableAtoms(sphere,R)
s← (”replace”, l atom ids, replace atoms)
S ← S ∪ {s}

end

end
else

l atoms ids← GetAdAddAtomIndexes(l atoms)
add atoms← QuerySuitableAtoms(sphere,R)
s← (”add”, l atom ids, add atoms)
S ← S ∪ {s}

end

end
return S
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4.3 Web application

4.3.1 Overiew of Application

Before integrating into the ViDok system, we create our separate web application that

allows users to design ligands with our decision support system. Our drug design sys-

tem follows the concept of the ViDok system that takes the user-designed ligands,

performs docking computation and returns the docking score (measuring binding

affinity of the ligand in kcal/mol) together with docked 3D structures. Besides that,

our system also gives some suggestions after the docked results are returned to help

users quickly figure out where need to change for a better ligand. Toward the ar-

chitecture of our drug design system, we adopt the desired architecture for ViDok

system as shown in Figure 4.2 to our own system using a web application instead of

a mobile application. Our adopted architecture is visualized in Figure 4.10.
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Figure 4.10: Our drug design system integrated AI-powered decision support system
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4.3.2 Requirements

Functional Requirements

• The system allows users to design ligand atom by atom, bond by bond.

• The system performs docking and returns the 3D structures with the docking

scores to the users after they submit their designs.

• The system only allow users design one ligand at the same time.

• The system provides users suggestions after docking their design ligands.

• User can view their previous designed ligands.

• The system ranks all ligands designed from all users.

Non-Functional Requirements

• The system can run on multiple platforms such as MacOS, Windows, Linux,

iPad OS, Android etc. and on multiple browers such as Firefox, Chrome and

Safari.

• The User Interface (UI) of the system can be responsive (rendered without any

error).

• Total time for docking and generating suggestions must be below 5 minutes.

• The system can serve upto 10 users at the sametime.

4.3.3 Usecase Descriptions

As described above, our system is a drug design system that allows users to perform

basic ligand building actions and gives suggestions for their designs. Our system,

in general, contains six usecases such as Log in, Log out, Register, Design ligand,

Apply suggestion and View designed ligands. Figure 4.11 presents the overview of

all usecases in our application. Table 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 gives the detail

descriptions of the mentioned usecases respectively.
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Figure 4.11: Overview of all usecases in our application
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Table 4.3: ”Log in” usecase description

Name Log in
Actor User, System
Description User logs in into the system.
Pre-conditions User opened the application on an appropriate browser.
Post-conditions User is logged in.
Normal flow 1. User inputs username and password.

2. The system verifies credential from the user.
3. The system is logged in.

Exceptions Exception 1: at step 2
1a. If the system cannot verify user credential, it shows the error
message to user.

Alternative flow There is no alternative flow.

Table 4.4: ”Log out” usecase description

Name Log out
Actor User, System
Description User logs out the system.
Pre-conditions User has already logged in.
Post-conditions User is logged out.
Normal flow 1. User presses the Logout button.

3. The system is logged out.
Exceptions There is no exception.
Alternative flow There is no alternative flow.
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Table 4.5: ”Register” usecase description

Name Register
Actor User, System
Description User registers a new account with the system.
Pre-conditions User opened the application on an appropriate browser.
Post-conditions A new account is created.
Normal flow 1. User inputs required information to create account.

2. The system verifies that the username and email input by
user has not been registered.
3. The system creates a new account for user.

Exceptions Exception 1: at step 2
1a. If the username or email has already existed, it shows the
error message to user.

Alternative flow There is no alternative flow.

Table 4.6: ”Design ligand” usecase description

Name Design ligand
Actor User, System
Description User design a ligand on the system.
Pre-conditions User has logged in and opened the design page.
Post-conditions User receives docking score and 3D structure of ligand-protein

complex.
Normal flow 1. User draws a new ligand on the system UI.

2. User presses Submit button.
3. The system performs docking computation.
4. The system creates suggestions for the docked ligand.
5. The system returns docking score and suggestions to the user.

Exceptions Exception 1: at step 2
1a. If the system cannot perform docking ligand, it shows the
error message to user.

Alternative flow There is no alternative flow.
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Table 4.7: ”Apply suggestion” usecase description

Name Apply suggestion
Actor User, System
Description User applies a suggestions given by our system.
Pre-conditions User submitted the designed ligand and received suggestions

from our system.
Post-conditions The suggestion is applied to the current design of the user.
Normal flow 1. User selects the suggestion to be applied.

2. The system merges the selected suggestion into current de-
sign.

Exceptions There is no exception.
Alternative flow There is no alternative flow

Table 4.8: ”View designed ligands” usecase description

Name View deisgned ligands
Actor User, System
Description User views previous designed ligands.
Pre-conditions User has already logged in.
Post-conditions The list of designed ligands are shown on the system UI.
Normal flow 1. User presses View ligands button.

2. The system shows the designed ligands onto the UI.
Exceptions There is no exception.
Alternative flow There is no alternative flow
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4.3.4 Database Design

To store the user information and user-designed ligand, we save those data into a

database. Toward the schema for the users, it will store the username, full name,

email and password attributes. The username attribute is the primary key of the

User schema. The Ligand schema is dependent on the User schema and will have

three attributes as submit time, saved path and docking score. In those attributes,

the attribute of submitting time is the partial key of the Ligand schema. Figure 4.12

presents the Enhanced Entity-Relationship Model (EERD) of our designed database

and Figure 4.13 visualizes the detailed design of the database.

Figure 4.12: EERD of database
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Figure 4.13: Database design schema



Chapter 5

Experiments and Results

5.1 Performance of The Propsoed GNN-based Model

5.1.1 Pharmacologically Active Predicting

Datasets and Configurations
Currently, all available datasets that can be used to validate DTI methods partially

overlap with others. The most reliable dataset is DrugBank [71] with 5260 drug-target

complexes including 1317 confirmed active ones. But the main problem is that our

chosen baseline method requires the co-crystal data (the 3D structure) when a protein

interacts with a ligand while the DrugBank dataset lacks this information. So, we

need to move to the others. The largest dataset is the CheMBL [72]. It includes

millions of ligands with verified activities but the same as the DrugBank one, it does

not fully include the co-crystal data. The most favourite dataset is the Protein Data

Bank [67] and its variants such as PDBbind [73], BindingDB [74], scPDB [75], etc.

These datasets do not have only the co-crystal data as required by our baseline but

also the verified binding affinity and protein pocket There are many researchers that

used these datasets to evaluate [9, 14, 64, 76]. According to the above analysis, we

choose the PDBbind dataset, a variant of Protein Data Bank, as the data to pretrain

the baseline method. Toward the data specified for Coronavirus, we use the data of

Fragalysis which is the most largest open available experimented data upto now.

We summarize two datasets that are used to train and test our model in Table 5.1.

62
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In a more details, PDBbind dataset is used for pretraining while Fragalysis dataset is

used for finetuning our model. We also use the Fragalysis to directly train our model

for demonstrating the affect of transfer learning. On one hand, the PDBbind dataset

is splitted into training and testing sets with a ratio of 8:2. On the other hand, the

Fragalysis dataset is splitted into training and testing sets with a ratio of 7:3.

Table 5.1 also indicates the number of active and inactive compounds in each

dataset. A complex of protein and compound is labeled active or inactive based on

its IC50. In case IC50 of a complex is equal to or lower than 2.5µM it is considered

as active and otherwise, it is inactive. Due to the disproportion in the number of

active and inactive samples, we implement the undersampling technique to the class

with higher quantity to swipe out the bias in training process.

Table 5.1: The number of protein-compound complexes used for training and testing
of each dataset

PDBbind Fragalysis
Active Inactive Total Active Inactive Total

Training 10037 5237 15274 75 125 200
Testing 2530 1287 3817 35 54 89

Before showing the training results, we want to specify the hyperparameters that

are used in model implementation. The models are composed of 4 GNN layers, the

dimension of each node embedding vector in GNN layer is 140. Our implementation

uses the same number of fully connected layers in the final classifier as the original

study which is 4 and the dimension of those layers equals 128 except the final one

is only one (due to the binary classification problem) [14]. We use a batch size of

16 in the training process. To avoid overfitting, we also adopt the dropout rate to

0.3. Regarding the training of models that applys Improvement 3, the number of

hops is set to 5, which is proven to produce better results according to [69]. The

final hyperparameter is the number of epochs, which differ while training on different

datasets and are not dependent on the models. When training directly on Fragalysis,

we choose the checkpoint with the highest AUC score out of the first 1000 epochs. As

for the pretrain model, the best checkpoint among the first 50 epochs will be selected.

Then, that checkpoint will be used to finetune on Fragalysis and the best result of

the first 1000 epochs will be chosen. All of our experments are performed on Google
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Colab with 2-core CPU, Tesla K80 GPU and 12GB of RAM.

To objectively validate our improved model performance, we perform compar-

isons with other deep learning-based models. Particularly, we choose top-tier mod-

els which requires different input representations including DeepDTA (string-based)

[63], DrugVQA (string-based for compound + feature matrix for protein) [36] and

GraphDTA (graph-based for compound + string-based for protein) [61]. These meth-

ods were reproduced using official implementations from authors and the best results

are chosen to report. We use the metric of Area Under the ROC Curve (AUC score)

[77] to judge overall performance between models. Table 5.2 summarizes the AUC

score of the above models and our model in different settings and scenarios. The first

column indicates the models with their settings. The last three columns store the

AUC scores of models when being directly trained on the Fragalysis, pretrained on

PDBbind and finetuned on Fragalysis dataset, respectively.

Table 5.2: AUC scores of baseline model compared to other models in various
settings grouped by molecular representation type

Model Directly Pretrained Finetuned
with settings trained on on on

Fragalysis PDBbind Fragalysis

String-based representation
DeepDTA 0.870 0.849 0.862

String-based + Feature matrix representation
DrugVQA 0.853 0.819 0.820

Graph-based + String-based representation
GraphDTA-GINConvNet 0.885 0.838 0.874
GraphDTA-GATNet 0.886 0.814 0.890
GraphDTA-GCNNet 0.868 0.836 0.862
GraphDTA-GAT GCN 0.874 0.835 0.874

Graph-based representation
Baseline model 0.841 0.758 0.859
Baseline + Ipmt 1 0.865 0.787 0.896
Baseline + Ipmt 2 0.877 0.785 0.915
Baseline + Ipmt 3 0.870 0.793 0.936
Baseline + Ipmt 1,2 0.822 0.813 0.930
Baseline + Ipmt 1,2,3 0.868 0.820 0.938
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The Benefit of Transfer Learning Strategy
In Table 5.2, we can observe improvements in accuracy when our models have

been pre-trained on the PDBbind compared to directly trained on the Fragalysis.

Specifically, toward the baseline model, the AUC score increases from 0.841 to 0.859

(increased 0.018). With settings including our improvements, the AUC scores make

a big leap, where, with the two first improvements, the difference is significant up

to 0.108. This suggests that without the pretraining process, the models generally

can’t learn how compounds interact with protein and seem overfitted when our im-

provements are applied. This is clearly seen by the combination of Improvement 1

and 2 only achieves an AUC score of 0.822 which is lower than that of the baseline

model (0.841), while in the finetuning scenario, it achieves better performance than

the baseline one (0.930 > 0.859). Although the results when being pretrained on the

PDBbind dataset are not too high, the pretraining process helps our models increase

their generalizability and learn the general interaction principles. Therefore, the fine-

tuning results on the Fragalysis are not overfitted and achieve better performance

than results of directly trained models.

The Effects of Proposed Improvements
According to Table 5.2, when applying each improvement separately, the produced

results are better than that of the baseline model in all scenarios. In a more insightful

view, when applying each improvement separately, the results always have higher

AUC scores than that of the baseline model. The most effective improvement belongs

to the multi-hop gating mechanism. With this mechanism, finetuned model achieves

0.936 (improved 0.077 from the baseline). Moreover, when our improvements are

combined together, they can boost the model performance to a higher level. The

combination of Improvement 1 and 2 results in AUC scores of 0.813 and 0.930 which

are better than those of single improvement configurations in PDBbind pretraining

scenario and in Fragalysis finetuning scenario respectively. Toward the best results our

models achieved, the setting including all three improvements reaches an outstanding

score of 0.938 in comparison with the scores from other settings in the finetuning

scenario. From the above observations, we can consider that the multi-hop gating

mechanism is really effective in creating a larger influential field for an atom or group

of atoms. Thus, this helps our models better generalize the functional groups in both
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protein and compound, which leads to outstanding results.

Comparing to Other Methods
When being trained directly on Fragalysis, the combination of the baseline model

and Improvement 2 achieves 0.877 AUC score, which is better than that of DeepDTA

and DrugVQA, at 0.870 and 0.853, respectively. However, the GraphDTA method

has a setting that reaches 0.886, which is higher than all of our models. In case being

pretrained on PDBbind, our models show slightly lower performance. Specifically, the

highest AUC score of our models is 0.820, which is lower than almost AUC scores of

GraphDTA and lower than that of DeepDTA (0.849). In spite of the unsatisfied results

on the PDBbind dataset, our models outperform the others when being finetuned on

the Fragalysis dataset. In detail, all settings that have our improvements achieve AUC

scores from 0.896 up to 0.938, which are strictly higher than the highest AUC score

of GraphDTA (0.890), DeepDTA (0.862), and DrugVQA (0.820). These outstanding

results suggest that our improved models are good at learning the general interaction

principles and thus, when being finetuned on Fragalysis, they achieve better results

than other methods.
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5.1.2 Drug-Protein Pairwise Interactions Prediction

According to our analysis in the above chapter, currently, no dataset annotates de-

tailed pairwise interactions between protein and ligand for us to directly validate

our method. Therefore, we incorporated a research group from the University of

Medicine and Pharmacy at Ho Chi Minh City to create a test set containing 20 lig-

ands with annotated common pairwise interactions to target Coronavirus protein.

Each groundtruth contains multiple pairs of ligand atom and protein atom that are

verified by experts in pharmacy to have interaction. We compare our predicted in-

teractions on each ligand and get the average result for the whole test set. The

performance of our method to identify pairwise interactions is shown in Table 5.3 in

the metric of Recall. Because of the complicated chemical interactions, validating our

method with the Precision metric is not fair because there will be some cases that

our model identified an actual interaction while it does not easy to discover and does

not appear in the ground truth of the test set. Another reason we do not validate

the Precision is due to the final goal of this thesis. We want to explore as many

interactions as possible to create a thoughtful cavity model for the target protein.

Table 5.3: The evaluation results of pairwise interaction prediction

No. Complex name Recall No. Complex name Recall

1 6LZE 0.82 11 6XQS 0.93
2 6M0K 0.58 12 7E19 0.73
3 6WTK 1.00 13 7JU7 0.21
4 6XA4 0.56 14 7KX5 0.86
5 6XBG 1.00 15 7L0D 0.86
6 6XBH 1.00 16 7LMD 0.50
7 6XBI 0.94 17 7LME 0.63
8 6XCH 1.00 18 7LMF 0.83
9 6XFN 0.40 19 7LMH 1.00
10 6XHM 0.88 20 7LMJ 1.00

Average Recall 0.79
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5.2 The Cavity Model of Target Protein

Using the dataset from ViDok , we have created the pharmacophore model (cavity

model in general) for the target protein of COVID-19 using our DBSCAN-based algo-

rithm. Firstly, we crawl top 1000 complexes (including protein and ligand) that have

highest docking scores. Then, we apply our proposed model in the first component to

extract pairwise interactions. Figure 5.2 visualizes the protein atoms associated with

interactions in 3D space. After that, we cluster the locations in 3D space of protein

atoms having interactions to spheres to create pharmacophore model. Toward the

modified DBSCAN algorithm, we set the hyperparameters of radius for neighbors ϵ

to 5.5Å and minimum number of cluster points minPts to 400.

As presented in the above chapters, the pharmacophore model contains multiple

spheres and each sphere represents for a group of atoms that have the same feature.

Our resulted list of spheres is shown in Figure 5.4. In this table, each sphere is

presented in each row with its coordinates and feature. Figure 5.1 visualizes all

the spheres of our pharmacophore model in 3D space. In Figure 5.1, spheres with

Hydrogen Donor feature are colored as green while spheres with Hydrogen Acceptor

feature are colored as orange. The color purple is used to indicate the spheres with

Hydrophobic feature.

Figure 5.1: Our built pharmacophore model
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Table 5.4: Built pharmacophore model of the target protein

Feature X Y Z Radius

Hydrogen Donor -30.225 3.831 66.757 5.5
Hydrogen Donor -19.0313 16.6303 56.0029 13.623
Hydrogen Donor -21.6388 27.2708 66.9083 8.8003
Hydrogen Donor -24.0361 34.8547 64.6313 7.628
Hydrogen Donor -11.6326 29.4802 66.0156 7.2845
Hydrogen Donor -8.198 28.631 61.431 5.5

Hydrogen Acceptor -41.5963 23.2133 46.3095 9.1333
Hydrogen Acceptor -20.4093 16.358 55.6273 11.5058
Hydrogen Acceptor -12.8375 28.9957 64.8636 12.7014

Hydrophobic -40.0793 24.85 46.7966 7.7066
Hydrophobic -27.6896 5.9601 66.6768 9.9262
Hydrophobic -24.5747 36.9257 65.9457 8.211
Hydrophobic -20.9697 17.4683 54.4411 9.3026
Hydrophobic -7.5645 29.226 65.6474 7.8231

Figure 5.2: Our predicted interacting protein atoms using top 1000 complexes from
ViDok. The blue, read and gray colors indicate Hydrogen Donor, Hydrogen Acceptor
and Hydrophobic interaction, respectively.
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5.3 The Performance of Decision Support System

In order to verify the effectiveness of our decision support system, we perform analy-

sis on real persons who are not pharmacologists and have basic chemistry knowledge.

There were 26 persons taken in our experiment. Each person is required to use their

chemical knowledge or a random amino acid as an initial template to design lig-

ands. After they submit their designs, our system will perform docking and generate

suggestions for them. They will receive the docking score, the 3D structure of the

ligand-protein complex, and our suggestions. They are also required to apply a ran-

dom suggestion in the returned list and resubmit their design. In this way, we can

evaluate how good our suggestions are or how our system helps boost the docking

score. We have summarized the information about participants in our experiment in

Table 5.5.

Table 5.5: Information about participants in our experiment

Number of participants 26
Total designed ligands 200
Number of ligand per participants 2-22
Average number of ligands per participants 7.69

Because we strictly require participants to apply a suggestion for their design,

the number of design ligands with and without suggestion are the same and equal

to 100. By comparing the docking between each pair of ligands (with and without

suggestion), we obtain how much the docking score is improved by our suggestion for

each pair. Then, we calculate the average score for all 100 ligands in each group. The

results of this evaluation are presented in Table 5.6. We also visualized the histogram

of the docking scores of ligands with and without suggestion in Figure 5.3. Please

notice that the docking score reflects the binding affinity of the ligand to the target

protein, so that the lower the docking score is the better the ligand is.

According to Table 5.6 and Figure 5.3, we can consider that our suggestions can

helps boosting the docking score in an average of −0, 762 kcal/mol. The average

scores after applying suggestions are −5.672, which is 16.6% better than the initial

design from the participants. These results are strong evidence proving our proposed

pipeline.
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Table 5.6: Experiment results about the performance of our decision support system

W/O Suggestion W Suggestion

Number of ligands 100 100
Mean docking score -4.91 -5.67
Standard deviation of docking scores 1.46 1.41
Average improved score -0.76
Average improved percentage 16.6%

Figure 5.3: Histogram of docking scores between ligands with and without sugges-
tion
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5.4 Web Application

5.4.1 Screenshots on Multiple Platforms

Our developed web application has four import areas as i) The area for ligand de-

signing tools; ii) The area showing suggestions; iii) The area showing 3D structure

and docking score and iv) The scoreboard containing designed ligands from all users.

Figure 5.4, 5.5, 5.6 and 5.7 are the screenshots of these areas respectively. We also

performed testing our application on multiple platforms. The screenshots of our ap-

plication on many different platforms with different browsers are shown in Figure

5.8.

Figure 5.4: Screenshot of the ligand designing tool
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Figure 5.5: Screenshot of the suggestion area
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Figure 5.6: Screenshot of the result area
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Figure 5.7: Screenshot of the scoreboard
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Figure 5.8: Screenshots of our web application on multiple platforms
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5.4.2 Computing Time

One of the most important factors that affects the drug discovery process is time.

Therefore, to prove the efficiency of our system, we perform time-testing experiments.

In this experiment, we reuse that data from 26 participants and 200 designed ligands

as in the above section. When the participants submit their design, we trace the time

our system performs docking calculation and suggestion generating. The detailed

results are shown in Table 5.7. Moreover, we also compare the time for processing

ligand with and without suggestion. Figure 5.9 visualizes the histogram for this

comparison.

Table 5.7: The results of our time-tesing experiment

W/O Suggestion W Suggestion

Number of ligands 100 100
Mean processing time 7.07 11.64
Standard deviation of processing time 6.56 10.98
Average additional time 4.57
Average additional percentage 66.5%

As in the above results, we can consider that our developed system satisfies the

predefined non-functional requirement about processing time (5 minutes). Besides,

according to Figure 5.9, the time for processing ligands with suggestion is always

higher than the time for ones without suggestion. It is a foreseen behavior because

applying suggestion usually makes the ligands more complex, which leads to a longer

processing time.
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Figure 5.9: Histogram of processing time for ligands with and without suggestion



Chapter 6

Conclusion

6.1 Summary

Technology in general and Computer Science in particular are developing rapidly,

followed by the development of other industries. As a result, recent advances in all

fields take the form of new techniques in computer science. Drug discovery, in general,

is an arduous, complex process that requires meticulousness and creativity both in

research and testing. These particular characteristics make the drug design process

lengthy and costly. Since then, crowdsourcing drug design had become popular in

the past 2-3 years, when the COVID-19 epidemic was raging worldwide. To make

the most of the community’s creativity in crowdsourcing drug design, a system of

instructions and suggestions for designers who do not have much chemical knowl-

edge is an option worth considering. In this thesis, I have used techniques based

on Artificial Intelligence to build a highly accurate predictive model of drug-protein

interactions. From these predicted interactions, I have successfully created a specific

pharmacophore model representing the Coronavirus. The algorithm that gives sug-

gestions for drug design, developed by me based on the pharmacophore model and

chemical knowledge, has increased the binding affinity of the designed drug, making

the drug better able to bind to the target protein of Coronavirus. Our system is not

expected to be used by only pharmacologists but also by everyone having basic chem-

ical knowledge. In addition, our website for drug design support system is deployed

at http://www.ura.hcmut.edu.vn/vidok so that everyone can easily use it.
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6.2 Future Developments

In the history of human development, there have been many diseases and epidemics

occurring, such as the SAR pandemic (2002), African swine fever, HIV/AIDS, and

most recently, the COVID-19 pandemic. These epidemics have serious consequences,

and history has shown us that finding an excellent drug to fight the viruses that cause

these diseases takes a lot of time and effort. For example, toward the disease of the

century HIV/AIDS, until now, there is no specific drug that can completely destroy

the virus that causes this disease. Therefore, the potential of drug design systems

is immense and can be applied to many different viruses. Our drug design decision

support system is similarly capable. With the techniques we have successfully applied

to Coronavirus data, we believe that the system can be wholly applied to many other

viruses to help the process of finding new drugs quickly and economically. Moreover,

our system can apply more advanced Artificial Intelligence techniques to achieve

better recommendation performance. In particular, improvements can be applied,

such as improving the drug-protein interaction prediction model to analyze more

types of interactions, improving the algorithm for generating suggestions so that we

can rank which suggestions are good, and building a generative model based on AI

when having enough data to create better drugs directly.
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Scientific paper

With the research presented in Section Identifying Drug-Protein Interactions, we have

summarized the achieved results and written a scientific paper. The full text of the

scientific paper is attached below.
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Abstract

COVID-19 pandemic, caused by Coronavirus, is undeniably a disaster for human beings. Although there
are many effective vaccines developed, specific drugs are still in urgent demand. Normally, to identify new
potential drugs, one needs to design compounds, and then test the interactions between them and the
virus protein in an in silico manner for determining the drug candidates. This process, known as Drug-
Target Interaction (DTI) prediction, can be used by molecular docking. However, the scoring function in
molecular docking to capture interactions of compound-target interactions is still challenging. Therefore, it
urges us to consider applying the latest Artificial Intelligence (AI) techniques for automating it. In particular,
Graph Neural Network (GNN) attracts much attention since it is very suitable for the graph-based nature
of compounds and virus proteins. However, to introduce a representation well-reflecting the biological
structures of compounds and proteins for GNN is by no means a trivial task. Moreover, since the available
datasets for Coronavirus are still limited, the recently developed GNN models have been suffering from
overfitting when dealing with this kind of disease. In this paper, we address those issues by proposing a
new model known as Atom-enhanced Graph Neural Network with Multi-hop Gating Mechanism. On one
hand, our model captures more specifically biological information of compound and protein atoms. On the
other hand, we introduce a new gating mechanism allowing the model to learn better from non-neighbor
connections. Once applied with transfer learning from very large medical databanks, our model enjoyed
outperformed performance experimenting with Coronavirus.
Contact: qttho@hcmut.edu.vn
Keywords: Coronavirus, Drug-Target Interaction, Graph Neural Networks, Multi-hop Gating Mechanism

1 Introduction
Viruses in general and Coronavirus (COVID-19) (WHO, 2021) in
particular have caused many deaths in the world through recent years
(Kontopantelis et al., 2022). Besides vaccines, drugs are the keys for

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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humans to fight against pandemic waves caused by viruses. This makes
drug design playing an extremely important role in constraining the
pandemic, especially when many new variants may be possibly born
(Burki, 2022).

To design a drug for a certain virus type, one may note that each type
of virus has main specific proteins, which are meditation for the assembly
of replication-transcription machinery, in order to form new kernels for
child viruses and could be an ideal antiviral target. Thus, drug design, in
conceptualization, is a process of trial-and-error that creates many different
compounds as illustrated in Figure 1. A compound, once designed, can be
represented as a graph whose vertices and edges are atoms and bonds
respectively, and so is the virus protein. The drug designer can try various
designs by testing possible interactions between compound atoms with
those from the virus protein. If a compound design introduces sufficiently
many such key interactions with the virus protein, it is a high chance
this compound may be effective to make the virus inactivated. Then, the
drug designer can choose this compound design for the next step of drug
production.

Fig. 1. The concept of interaction between drug and protein

To observe the interaction between a compound and a virus protein,
traditional in silico screening methods usually rely on docking tools such
as AutoDock Vina (Trott and Olson, 2010), Smina (Koes et al., 2013),
MedusaDock 2.0 (Wang and Dokholyan, 2019), etc. However, as the
docking process usually takes time (normally 3-5 minutes) and importantly
limitation of scoring function, it is hard for a drug designer to explore a
large scale of potential compounds to obtain the best one. With the recent
advancements of Artificial Intelligence (AI) today, we can use AI models
to predict the interactions between a compound design and a virus protein
to select only highly-interactive compounds for in vitro experiments. It
would significantly reduce time and cost for drug design process. This
prediction task is often referred as Drug-Target Interaction DTI one.

Recent studies have demonstrated the strength of AI in drug
design with various Deep Learning (DL) architectures to quickly and
accurately remove known-weak-interaction compounds. As compounds
and proteins are graph-based structures, graph analysis techniques are
usually adopted in this area. In recent years, Graph Neural Networks
(GNNs) (Scarselli et al., 2009) emerged as the latest advanced techniques
for graph processing. Among state-of-the-art GNN-based models for DTI
prediction, perhaps the study presented by Lim et al. (2019) is most
remarkable as it does not only apply GNNs but also embeds the 3D structure
of the compound and protein into graph features. This work will then serve
as the baseline for our research.

Moreover, in the fight against COVID-19, there are not many
compounds that have been put in in vitro screening. The largest crowd-
sourcing drug discovery system for COVID-19, PostEra COVID Moonshot
(Chodera et al., 2020), has experimented with only about 2000 compounds.
In those experimented compounds, only 379 compounds have been

captured co-crystal data i.e. the 3D structure of compounds by Fragalysis
(Diamond, 2021). As a consequence, current drug-for-COVID datasets
lack generalization for training AI models, making them suffering from
overfitting. We also address this issue in our study by proposing a transfer
learning strategy in this research. Thus, our contributions are of two-fold
as follows.

• Firstly, we apply transfer learning to pretrain the baseline model
on a suitable known-interaction variant dataset of the large and
diverse dataset from Protein Data Bank (Berman et al., 2000).
Data from Protein Data Bank is collected from real experiments of
pharmaceutical colleagues. Then we finetune the pretrained model for
predicting interaction on COVID-19 target protein using the dataset of
Fragalysis.

• Secondly, and importantly, we introduce a new model, known as Atom-
enhanced Graph Neural Network with Multi-hop Gating Mechanism.
This model is extended from a baseline model introduced in Lim
et al. (2019), in which we introduced three major improvement
strategies as follows: (i) Enriched atom encoding: we additionally
encode atoms in the model with more important attributes; (ii) Total
atom aggregation: we enhance the baseline model to aggregate not
only the atoms of compounds but also of the proteins to produce
more informative representation of the model output; and (iii) Multi-
hop gating mechanism: we modify the original gating mechanism to
allow non-neighbor atoms affect others, earning improved interaction
prediction.

2 Preliminaries and Related Works

2.1 Drug-Target Interaction problem

The Drug-Target Interaction problem is a common problem in drug
discovery and is solved by many methods from traditional to modern
(Thafar et al., 2019). This problem takes a compound and a target protein
as its inputs and uses an algorithm to predict if the compound can interact
(be pharmacologically active) with the protein or not (binary classification)
(Thafar et al., 2019). A compound, when being put together with a protein
in an environment, can create bonds to that protein. A bond can belong to
one of three major common types which are hydrogen, hydrophobic, Van
Der Waals (Riley and Hobza, 2011). Each type has different characteristics
and its own strengths. In case all bonds created have enough total strength
(measured by a binding affinity metric like IC50), depending on the aims
of the study, that compound can be considered as active or inactive based
on a defined cut-off (Gao et al., 2018). For example, we want to keep only
the compounds that have IC50 to the target protein less than 1 µM for the
in vitro screening, we can use 1 µM as a threshold to split the datasets
into active and inactive sets for the next analysis steps.

2.2 Modern DTI prediction techniques

Recent years show the vast developments of the AI Era in many
distinct industries such as health, telecommunication, service industry,
etc. Especially in the COVID-19 situation, many AI techniques from
Machine Learning (ML) to Deep Learning (DL) such as Support Vector
Machine, Ensemble Learning, CNN, Transformer, GNN, etc. were
applied to help speed up the process of making vaccines and drugs
(Keshavarzi Arshadi et al., 2020) and it makes no exception for the
Drug-Target Interaction prediction problem (Lim et al., 2021). At the
conceptualization level, almost recent DTI models initially use one suitable
AI technique to encode the compound and protein into feature vectors
based on their representations. Then, these models aggregate the two
feature vectors together to feed into a classifier to predict if the compound
is pharmacologically active with the protein or not (Lim et al., 2019;



picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2022/4/30 — page 3 — #3

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

3

Zheng et al., 2020; Nguyen et al., 2020; Lee et al., 2019; Öztürk et al.,
2018). Some models also utilize the attention mechanism to enhance the
performance when creating feature vectors (Lim et al., 2019; Zheng et al.,
2020; Nguyen et al., 2020).

Another approach for this DTI problem is based on the “guilt-by-
association” principle (Thafar et al., 2020; Muegge and Mukherjee,
2016). Methods belonging to this approach try to find similar proteins
and compounds in the known-interaction datasets and then use them as
evidence to predict the input compound-protein (Thafar et al., 2020, 2019).
This approach has the main weakness when dealing with strange proteins
or compounds. In this case, there is not much "evidence" for guiding the
model, so its performance could not be stable (Thafar et al., 2019).

Comparing the above approaches, we can consider that with the unseen
protein of Coronavirus, the second approach using similarities will not
work as well as the first one with a proper training strategy. Therefore, we
have decided to choose our baseline following the first approach (encoding
the drug and protein than using the produced feature vector to classify).

2.3 Graph Attention Network Layer

A graph can be defined by (V , E), where V is a set of nodes and E is
a set of edges. The representation of a graph can be an adjacency matrix,
adjacency list or incidence matrix. If the graph nodes have attributes, they
will be represented by vectors. The Graph Neural Network (GNN), which
was born in 2009 (Scarselli et al., 2009), has been explored and developed
in various different domains and has proved its noticeable performance in
many applications. Many variants of GNNs are formed to adapt to specific
domains. Usually, a GNN model contains multiple GNN layers. The input
graph after being passed through N GNN layers will be aggregated to
form a representation vector for the whole graph. Then, that vector can be
used in various downstream tasks. A conceptual view of a GNN model is
illustrated in Figure 2.

Fig. 2. Conceptualization of a GNN model

In this study, we utilize the power of Graph Attention Networks (GAT)
(Velickovic et al., 2018), which is the most well-known and widely-used
variant of GNNs. Assuming we have a graph G = (V,E) and each node
has a fixed number of features F , the input for GAT contains an adjacency
matrix A and a list of node feature vectors X defined as (1) and (2).

Aij =

{
1 if i and j are connected by an edge

0 otherwise
(1)

X = {x1, x2, . . . , x|V |} with xi ∈ RF (2)

Firstly, the GAT performs linear projection to put the node feature
vectors into F ′-dimensioned embedding space by (3). In (3), W h ∈
RF ′×F is a learnable weight matrix, and xh

i is the projected i-th node
feature vector.

xh
i = W hxi, i = 1, |V | (3)

Then the GAT calculates the attention coefficients eij for all pairs
of (i, j) nodes. These coefficients are then normalized by the softmax
function to decrease the bias and the cost of computing. When normalizing
for eij , only nodes which are connected to i-th node are considered.
Finally, the higher representation of each node is produced by weighted
sum of its neighbor nodes using attention coefficients. Equation (4a), (4b)
and (4c) are formal definitions of above operations.





eij = (xh
i )

TW ax
h
j + (xh

j )
TW ax

h
i , i, j = 1, |V | (4a)

aij =
exp(eij)∑

k∈Ci
exp(eik)

Aij , i, j = 1, |V | (4b)

x′
i =

∑

j∈Ci

aijx
h
j , i = 1, |V | (4c)

In (4a), eij is the attention coefficient reflecting the importance of j-th
atom to i-th atom and W a ∈ RF ′×F ′

is a learnable weight matrix. In
(4b), aij is the normalized attention coefficient corresponding to eij and
Ci is the set of neighbor nodes of i-th node. In (4c), x′

i is the higher
representation of i-th node feature vector. Then the list X′ = {x′

i ∈
RF ′ |i = 1, |V |} is the output of the GAT layer.

3 The Atom-enhanced Graph Neural Network
Model with Multi-hop Gating Mechanism for
Drug-Target Interaction Prediction

3.1 The baseline model

Our baseline model reuses the study of Lim et al. (2019). This is a novel
GNN-based model that can integrate the 3D structure into compound and
protein representations. Figure 3 illustrates the overview of the model.

3.1.1 Model input representation
Firstly, the model takes the input of a compound and a protein as a graph.
According to the original study, while all atoms in the compound are taken
into the graph, only protein atoms in the radius of 8Å to any compound
atoms are considered. The graph is presented by a matrix of atom features
(X) and two adjacency matrix (A1, A2) and equations (5), (6) and
(7) shows the way to create these matrixes, respectively. Figure 3 has
visualized a conceptual view of matrix X , A1 and A2.

X = {x1, x2, . . . , xM} with xi ∈ RF (5)

A1
ij =

{
1 if i and j are connected by covalent bond or i = j

0 otherwise
(6)

A2
ij =





A1
ij if i, j ∈ protein or i, j ∈ compound

e−(dij−µ)2/σ if i ∈ protein and j ∈ compound,

or if i ∈ compound and j ∈ protein

0 otherwise

(7)
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Table 1. The list of atom features used in original study and in Improvement 1

Feature Value
Original

Atom type C,N,O,S,F,P,Cl,Br,B,H (onehot)
Degree of atom 0, 1, 2, 3, 4, 5, 6 (onehot)
Number of H atoms attached 0, 1, 2, 3, 4 (onehot)
Implicit valence electrons 0, 1, 2, 3, 4, 5 (onehot)
In aromatic 0 or 1

Added in Improvement 1
Hydrogen D/A [is_donor, is_acceptor]
Pos/Neg Ionizable [is_pos, is_neg]
In lumped hydrophobe 0 or 1

In (5), xi is a feature vector of an atom which contains F features
shown in Table (1) and M is the total atoms in the graph representing
both compound and protein. In (6) and (7), i and j are the atom indexes
with the same order as of X . A1

ij and A2
ij are the elements at i-th row

and j-th column in the A1 and A2 matrix, corresponding. In (7), dij is
the distance between i-th atom and j-th atom and µ and σ are learnable
parameters.

To adapt this model for our chosen datasets, we have modified the
required input by replacing the 8Å-radius atoms of protein with the protein
pocket (protein cavity). The protein pocket is proved to be the place where
almost interactions occur (Johnson and Karanicolas, 2013). That means
if a compound is considered active with a protein, it creates many strong
interactions with protein atoms in the protein cavity. Therefore, using the
protein cavity makes much more sense than the original method.

After all the inputs are prepared, they are then passed to model for
predicting compound-protein interaction.

3.1.2 Model architecture
In this baseline model, Lim and his partners used the GAT layer as the main
layer for feature extraction. However, they modified the original GAT layer
by adding a gating mechanism at the end of the layer to control how much
feature information is passed through. In a formal form, equation (4c) of
the original GAT is replaced by (8).





xtemp
i =

∑
j∈Ci

aijx
h
j , i = 1, |V |

zi = σ(W o(xi||xtemp
i ) + b), i = 1, |V |

x′
i = zixi + (1− zi)x

temp
i , i = 1, |V |

(8)

In (8), W o ∈ R1×2F ′
n is a learnable weight matrix and ’||’ is the

concatenation operator.
LetGAT () be the formal representation of all GAT layer formulations

which are (3), (4a), (4b) and (8). With the input of (X , A1, A2)
created from the complex of protein and compound, we define a GAT
block that takes these input and produces the higher representation for X .
Specifically, the GAT block separates the input into (X , A1) and (X ,
A2), passes them to GAT layer to get output X′

1 and X′
2 and perform

subtraction X′
2 − X′

1 for model to learn the difference between the
structure in a binding pose and the structure as separated. Equation (9)
presents insights of a GAT block.





X′
1 = GAT (X,A1)

X′
2 = GAT (X,A2)

X′
out = X′

2 −X′
1

(9)

In (9), X′
out is the output of GAT block. According to the

original study, authors stacked N GAT block to achieve better feature
representations. This can be done by using the output of the previous

Fig. 3. The architecture of the baseline model

GAT block X′
out with two adjacency matrixes A1, A2 as the input for

the next GAT block. Please notice that the number of nodes in the GAT
layer is equal to the total number of atoms of both protein and compound
(|V | = M ).

The output refined atom feature vectors of the last GAT block are
aggregated in the next step to form a feature vector xcomplex representing
the complex of the input protein and compound. Equation (10) gives the
formulation for creating this vector. Finally, a classifier with multiple fully-
connected layers is employed to decide if the input complex is active or
not. A fully-connected layer is a non-linear transformation that is defined
in (11). An overview of the baseline model is also showed in Figure 3.

xcomplex =
∑

i∈compound

xi (10)

y = σ(W cx+ b) (11)

In (11), x, y is the input and output fully-connected layer
corresponding. The W c is a learnable weight matrix and b is the bias.
Each fully-connected layer in the classifier has its activation function σ as
the ReLU function except the sigmoid function for the final one.
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3.2 The transfer learning strategy

As mentioned in the above sections, to deal with insufficient drug data
of Coronavirus’s Mpro protein, we apply a transfer learning strategy for
learning the general pattern (general interaction rules) before exploring
specific rules of Mpro protein. Firstly, for each model with configured
settings (e.g improvements), we perform pretraining using the PDBbind
dataset for the model to obtain the generalizability. After that, we finetune
the pretrained weights of the model using the Fragalysis dataset. With
this process, we expect the finetuned model learned both the common
interaction rules of any compound-protein and the specific rules for
Coronarivus protein (Mpro protein). To demonstrate how transfer learning
affects the model performance, we also train the scratch model with the
Fragalysis dataset for comparison. Figure 4 shows the overview of the
above flows including normal flow (model is directly trained on Fragalysis)
and transfer learning flow (model is pretrained before being finetuned on
Fragalysis).

Fig. 4. Illustration of the normal flow and transfer learning flow used in this study

3.3 The Atom-enhanced GNN model with Multi-hop Gating
Mechanism

In this study, we introduce an improved model from the baseline one,
known as Atom-enhanced GNN model with Multi-hop Gating Mechanism1,
in which the following improvements are carried out.

3.3.1 Improvement 1: Enriched atom encoding
The first improvement is enriching atom encoding which adds more
chemical features to the representation of each atom. The newly added
features include atom degree of six, whether an atom is a hydrogen
donor or hydrogen acceptor, whether an atom can be positive or negative
ionizable, whether an atom is in any lumped hydrophobe, which are
the prerequisites of the corresponding bonding type (a hydrogen bonding
requires a hydrogen donor and a hydrogen acceptor atom, so on). Table 1
summarizes all features that are used in this improvement.

3.3.2 Improvement 2: Total atom aggregation
The second improvement basically bases on an assumption that
interactions are only created if the protein and the compound match some
interaction rules (Lim et al., 2021). Therefore, we have modified the
original aggregating layer which calculates the sum of all compound atom
vectors to a combination of compound and protein representation vector.
With our modification, any protein atoms that have a minimum distance
to any compound atoms less than 5Å will be taken into consideration
for interaction prediction. The mathematical formulations for our new
aggregating layer are proposed in (12a)-(12c).

1 Our implementation is available at https://github.com/ViDok-
BK/GMGM

xcomplex = (xcompound||xprotein) (12a)

xcompound =
∑

i∈compound

xi (12b)

{
xprotein =

∑
i∈P xi

P = {xp, p ∈ protein|∃c ∈ compound : dist(p, c) < 5Å}
(12c)

In (12a), ’||’ is the concatenation operator and in (12c), dist(p, c) is the
Euclidean distance (O’Neill, 2006) between protein atom p and compound
atom c.

3.3.3 Improvement 3: Multi-hop gating mechanism
The third improvement is the multi-hop gating mechanism. In this
improvement, we repeat the calculation of the gating mechanism multiple
times. The reason for this improvement is to enlarge the receptive field of
an atom, which is basically based on an assumption in chemistry that
atoms having the same function (e.g. hydrophilic, hydrophobic, etc.)
usually concentrate together and create a wide area of influence over
non-neighbors. Figure 5 gives a more intuitive view of this mechanism
of influence. This improvement is inspired by the attention diffusion
mechanism, which is proposed by Wang et al. (2021). The process of
repeating the gating mechanism calculation exactly matches the process
of approximate computation for attention diffusion except for the gating
coefficient zi which is computed from node feature vectors compared to
manually input in Wang’s study. Let K be the number of hops in the
receptive field of an atom, the process of calculating multi-hop gating
mechanism is presented in Algorithm 1. Please notice that in our proposed
improvement, we follow Wang’s study to use xh

i for computing x
(k)
i ,

k = 1,K instead of xi as in original study of Lim.

Fig. 5. The difference between models with and without multi-hop gating mechanism

Algorithm 1: Multi-hop gating mechanism

Input : Normalized attention coefficients aij , where i, j = 1, |V |
Atom feature vectors xh

i , where i = 1, |V |
Number of hops K

Output: Refined atom feature vectors x(K)
i , where i = 1, |V |

x
(0)
i = xh

i , i = 1, |V |
for k in Range(1 . . .K) do

xtemp
i =

∑
j∈Ci

aijx
(k−1)
j , i = 1, |V |

zi = σ(W o(x
(0)
i ||xtemp

i ) + b), i = 1, |V |
x
(k)
i = zix

(0)
i + (1− zi)x

temp
i , i = 1, |V |

end

return X(K) = {x(K)
i |i = 1, |V |}
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4 Experiments

4.1 Datasets and configurations

First of all, we summarize two datasets that are used to train and test our
model in Table 2. In more detail, PDBbind dataset is used for pretraining
while Fragalysis dataset is used for finetuning our model. We also use
the Fragalysis to directly train our model for demonstrating the affect of
transfer learning. The PDBbind dataset is splitted into training and testing
sets with a ratio of 8:2 while the Fragalysis dataset is splitted with a ratio of
7:3. Table 2 indicates the number of active and inactive compounds in each
dataset. A complex of protein and compound is labeled active or inactive
based on its IC50. In case IC50 of a complex is equal to or lower than
2.5µM it is considered as active and otherwise, it is inactive. Due to the
disproportion in the number of active and inactive samples, we implement
the undersampling technique to the class with higher quantity to wipe out
the bias in training process.

Table 2. The number of compound-protein complexes used for training and
testing of each dataset

PDBbind Fragalysis
Active Inactive Total Active Inactive Total

Training 10037 5237 15274 75 125 200
Testing 2530 1287 3817 35 54 89

Table 3. AUC scores of baseline model compared to other models in various
settings grouped by molecular representation type

Model Directly Pretrained Finetuned
with settings trained on on on

Fragalysis PDBbind Fragalysis
String-based representation

DeepDTA 0.870 0.849 0.862
String-based + Feature matrix representation

DrugVQA 0.853 0.819 0.820
Graph-based + String-based representation

GraphDTA-GINConvNet 0.885 0.838 0.874
GraphDTA-GATNet 0.886 0.814 0.890
GraphDTA-GCNNet 0.868 0.836 0.862
GraphDTA-GAT_GCN 0.874 0.835 0.874

Graph-based representation
Baseline model 0.841 0.758 0.859
Baseline + Ipmt 1 0.865 0.787 0.896
Baseline + Ipmt 2 0.877 0.785 0.915
Baseline + Ipmt 3 0.870 0.793 0.936
Baseline + Ipmt 1,2 0.822 0.813 0.930
Baseline + Ipmt 1,2,3 0.868 0.820 0.938

Before showing the training results, we want to specify the
hyperparameters that are used in model implementation. The models are
composed of 4 GNN layers, the dimension of each node embedding vector
in GNN layer is 140. Our implementation uses the same number of fully
connected layers in the final classifier as the original study which is 4
and the dimension of those layers equals 128 except the final one is only
one (due to the binary classification problem) (Lim et al., 2019). We use
a batch size of 16 in the training process. To avoid overfitting, we also
adopt the dropout rate to 0.3. Regarding the training of models that applies
Improvement 3, the number of hops is set to 5, which is proven to produce
better results according to Wang et al. (2021). The final hyperparameter is
the number of epochs, which differ while training on different datasets and

are not dependent on the models. When training directly on Fragalysis,
we choose the result with the highest AUC score out of the first 1000
epochs. As for the pretrain model, the best checkpoint among the first 50
epochs will be selected. Then, that checkpoint will be used to finetune on
Fragalysis and the best result of the first 1000 epochs will be chosen. All of
our experiments are performed on Google Colab with 2-core CPU, Tesla
K80 GPU and 12GB of RAM.

To objectively validate our improved model performance, we perform
comparisons with other deep learning-based models. Particularly, we
choose top-tier models which requires different input representations
including DeepDTA (string-based) (Öztürk et al., 2018), DrugVQA
(string-based for compound + feature matrix for protein) (Zheng et al.,
2020) and GraphDTA (graph-based for compound + string-based for
protein) (Nguyen et al., 2020). These methods were reproduced using
official implementations from authors and the best results are chosen to
report. We use the metric of Area Under the ROC Curve (AUC score)
(Bradley, 1997) to judge overall performance between models. Table 3
summarizes the AUC score of the above models and our model in different
settings and scenarios. The first column indicates the models with their
settings. The last three columns store the AUC scores of models when being
directly trained on the Fragalysis, pretrained on PDBbind and finetuned
on Fragalysis dataset, respectively.

4.2 The benefit of transfer learning strategy

In Table 3, we can observe improvements in accuracy when our models
have been pre-trained on the PDBbind compared to directly trained on
the Fragalysis. Specifically, toward the baseline model, the AUC score
increases from 0.841 to 0.859 (increased 0.018). With settings including
our improvements, the AUC scores make a big leap, where, with the
two first improvements, the difference is significant up to 0.108. This
suggests that without the pretraining process, the models generally can’t
learn how compounds interact with protein and seem overfitted when our
improvements are applied. This is clearly seen by the combination of
Improvement 1 and 2 only achieves an AUC score of 0.822 which is
lower than that of the baseline model (0.841), while in the finetuning
scenario, it achieves better performance than the baseline one (0.930 >

0.859). Although the results when being pretrained on the PDBbind dataset
are not too high, the pretraining process helps our models increase their
generalizability and learn the general interaction principles. Therefore, the
finetuning results on the Fragalysis are not overfitted and achieve better
performance than results of directly trained models.

4.3 The effects of proposed improvements

According to Table 3, when applying each improvement separately, the
produced results are better than that of the baseline model in all scenarios.
In a more insightful view, when applying each improvement separately, the
results always have higher AUC scores than that of the baseline model. The
most effective improvement belongs to the multi-hop gating mechanism.
With this mechanism, finetuned model achieves 0.936 (improved 0.077

from the baseline). Moreover, when our improvements are combined
together, they can boost the model performance to a higher level. The
combination of Improvement 1 and 2 results in AUC scores of 0.813 and
0.930 which are better than those of single improvement configurations
in PDBbind pretraining scenario and in Fragalysis finetuning scenario
respectively. Toward the best results our models achieved, the setting
including all three improvements reaches an outstanding score of 0.938 in
comparison with the scores from other settings in the finetuning scenario.
From the above observations, we can consider that the multi-hop gating
mechanism is really effective in creating a larger influential field for an
atom or group of atoms. Thus, this helps our models better generalize
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the functional groups in both protein and compound, which leads to
outstanding results.

4.4 Comparison with other methods

When being trained directly on Fragalysis, the combination of the baseline
model and Improvement 2 achieves 0.877 AUC score, which is better
than that of DeepDTA and DrugVQA, at 0.870 and 0.853, respectively.
However, the GraphDTA method has a setting that reaches 0.886, which
is higher than all of our models. In case being pretrained on PDBbind,
our models show slightly lower performance. Specifically, the highest
AUC score of our models is 0.820, which is lower than almost AUC
scores of GraphDTA and lower than that of DeepDTA (0.849). In spite
of the unsatisfied results on the PDBbind dataset, our models outperform
the others when being finetuned on the Fragalysis dataset. In detail, all
settings that have our improvements achieve AUC scores from 0.896 up to
0.938, which are strictly higher than the highest AUC score of GraphDTA
(0.890), DeepDTA (0.862), and DrugVQA (0.820). These outstanding
results suggest that our improved models are good at learning the general
interaction principles and thus, when being finetuned on Fragalysis, they
achieve better results than other methods.

5 Conclusion
Drug-Target Interaction prediction has been a last-long problem in drug
discovery and it makes an essential contribution to the success of
developing drugs. Toward the COVID-19 situation, the more effective the
method of solving this problem is, the quicker and less cost-consuming the
drug development process is. With our proposed model together with the
transfer learning strategy, we achieve a noticeable performance compared
to the baseline model and other state-of-the-art ones. With these results,
our model can be applied in many COVID-19 treatment research centers
to boost their productivity in designing candidate drugs. In the future, our
improved model can be developed to integrate some weighting functions
for assessing the importance of both intra-molecular covalent and inter-
molecular non-covalent interactions. Moreover, the loss function can
be upgraded for evaluating the strength of pairwise interactions and the
GAT layer can be modified to include edge features. In conclusion, this
model has much room to improve including both the architecture and the
optimization process.
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